A polybenzidine-modified FeO@SiO nanocomposite was successfully synthesized through a chemical oxidation method and employed as a novel sorbent in dispersive magnetic solid phase extraction (DMSPE) for the preconcentration and determination of three triazole fungicides (TFs), namely diniconazole, tebuconazole, and triticonazole in river water, rice paddy soil, and grape samples. The synthesis method involved a polybenzidine self-assembly coating on FeO@SiO magnetic composite. Characterization techniques such as FT-IR, XRD, FESEM, EDX, and VSM were used to confirm the correctness of the synthesized nano-sorbent. The target TFs were determined in actual samples using the synthesized nanocomposite sorbent in combination with gas chromatography-flame ionization detection (FID). Several variables were carefully optimized , including the sample pH, sorbent dosage, extraction time, ionic strength, and desorption condition (solvent type, volume, and time). Under the optimized experimental conditions, the method exhibited linearity in the concentration range 5-1000 ng mL for triticonazole and 2-1000 ng mL for diniconazole and tebuconazole. The limits of detection (LOD) for the three TFs were in the range 0.6-1.5 ng mL. The method demonstrated acceptable precision with intra-day and inter-day relative standard deviation (RSD) values of less than 6.5%. The enrichment factors ranged from 248 to 254. Finally, the method applicability was evaluated by determining TFs in river water, rice paddy soil, and grape samples with recoveries in the range 90.5-106, indicating that the matrix effect was negligible in the proposed DMSPE procedure.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-023-05948-zDOI Listing

Publication Analysis

Top Keywords

dispersive magnetic
8
magnetic solid
8
solid phase
8
phase extraction
8
triazole fungicides
8
diniconazole tebuconazole
8
river water
8
water rice
8
rice paddy
8
paddy soil
8

Similar Publications

We investigate the effect of focused-ion-beam (FIB) irradiation on spin waves with sub-micron wavelengths in Yttrium-Iron-Garnet (YIG) films. Time-resolved scanning transmission X-ray (TR-STXM) microscopy was used to image the spin waves in irradiated regions and deduce corresponding changes in the magnetic parameters of the film. We find that the changes of Gairradiation can be understood by assuming a few percent change in the effective magnetizationof the film due to a trade-off between changes in anisotropy and effective film thickness.

View Article and Find Full Text PDF

Ferroelectrics based on van der Waals semiconductors represent an emergent class of materials for disruptive technologies ranging from neuromorphic computing to low-power electronics. However, many theoretical predictions of their electronic properties have yet to be confirmed experimentally and exploited. Here, we use nanoscale angle-resolved photoemission electron spectroscopy and optical transmission in high magnetic fields to reveal the electronic band structure of the van der Waals ferroelectric indium selenide (α-InSe).

View Article and Find Full Text PDF

Functional connectivity holds promise as a biomarker of schizophrenia. Yet, the high dimensionality of predictive models trained on functional connectomes, combined with small sample sizes in clinical research, increases the risk of overfitting. Recently, low-dimensional representations of the connectome such as macroscale cortical gradients and gradient dispersion have been proposed, with studies noting consistent gradient and dispersion differences in psychiatric conditions.

View Article and Find Full Text PDF

Atomically Dispersed Ta-O-Co Sites Capable of Mitigating Side Reaction Occurrence for Stable Lithium-Oxygen Batteries.

J Am Chem Soc

January 2025

Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.

The side reactions accompanying the charging and discharging process, as well as the difficulty in decomposing the discharge product lithium peroxide, have been important issues in the research field of lithium-oxygen batteries for a long time. Here, single atom Ta supported by CoO hollow sphere was designed and synthesized as a cathode catalyst. The single atom Ta forms an electron transport channel through the Ta-O-Co structure to stabilize octahedral Co sites, forming strong adsorption with reaction intermediates and ultimately forming a film-like lithium peroxide that is highly dispersed.

View Article and Find Full Text PDF

Spectral dispersion in low-field nuclear magnetic resonance (NMR) can significantly affect NMR spectral analysis, particularly when studying complex mixtures like metabolic profiling of biological samples. To address signal superposition in these spectra, we employed spectral editing with selective excitation pulses, proving it to be a suitable approach. Optimal control pulses were implemented in low-field NMR and demonstrated their capability to selectively excite and eliminate specific amino acids, such as phenylalanine and taurine, either individually or simultaneously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!