Extensive use of chemicals like herbicides in rice and other fields to manage weeds is expected to have a lasting influence on the soil environment. Considering this rationale, we aimed to decipher the effects of herbicides, Pendimethalin and Pretilachlor, applied at 0.5 and 0.6 kg ha, respectively on the rhizosphere microbial community and soil characteristics in the tropical rice field, managed under zero tillage cultivation. The quantity of herbicide residues declined gradually since application up to 60 days thereafter it reached the non-detectable level. Most of the soil variables viz., microbial biomass, soil enzymes etc., exhibited slight reduction in the treated soils compared to the control. A gradual decline was observed in Mineral-N, MBC, MBN and enzyme activities. Quantitative polymerase chain reaction results showed maximal microbial abundance of bacteria, fungi and archaea at mid-flowering stage of rice crop. The 16 rRNA and ITS region targeted amplicons high throughput sequencing microbial metagenomic approach revealed total of 94, 1353, and 510 species for archaea, bacteria and fungi, respectively. The metabarcoding of core microbiota revealed that the archaea comprised of Nitrososphaera, Nitrosocosmicus, and Methanosarcina. In the bacterial core microbiome, Neobacillus, Nitrospira, Thaurea, and Microvigra were found as the predominant taxa. Fusarium, Clonostachys, Nigrospora, Mortierella, Chaetomium, etc., were found in core fungal microbiome. Overall, the study exhibited that the recommended dose of herbicides found to be detrimental to the microbial dynamics, though a negative relation between residues and soil variables was observed that might alter the microbial diversity. The outcomes offer a comprehensive understanding of how herbicides affect the microbial community in zero tillage rice soil, thus has a critical imputation for eco-friendly and sustainable rice agriculture. Further, the long-term studies will be helpful in elucidating the role of identified microbial groups in sustaining the soil fertility and crop productivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2023.117033 | DOI Listing |
Environ Microbiome
January 2025
LMO Team, National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon, Republic of Korea.
Background: The anthosphere, also known as the floral microbiome, is a crucial component of the plant reproductive system. Therefore, understanding the anthospheric microbiome is essential to explore the diversity, interactions, and functions of wildflowers that coexist in natural habitats. We aimed to explore microbial interaction mechanisms and key drivers of microbial community structures using 144 flower samples from 12 different wild plant species inhabiting the same natural environment in South Korea.
View Article and Find Full Text PDFMicrobiome
January 2025
Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany.
Background: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases.
Results: Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis.
Inn Med (Heidelb)
January 2025
Medizinische Klinik 2, Ludwig-Maximilians-Universität München, Marchioninistraße 15, 83477, München, Deutschland.
Background: In patients with inflammatory bowel diseases (IBD), functional complaints frequently persist after the clearing of inflammation and are clinically difficult to distinguish from symptoms of inflammation. In recent years, the influence of bidirectional communication between the gut and brain on gut physiology, emotions, and behavior has been demonstrated.
Research Questions: What mechanisms underlie the development of functional gastrointestinal complaints in patients with irritable bowel syndrome (IBS) and IBD? What therapeutic approaches arise from this?
Materials And Methods: Narrative review.
Probiotics Antimicrob Proteins
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India.
Recent evidence links gut microbiota alterations to neurodegenerative disorders, including Parkinson's disease (PD). Replenishing the abnormal composition of gut microbiota through gut microbiota-based interventions "prebiotics, probiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT)" has shown beneficial effects in PD. These interventions increase gut metabolites like short-chain fatty acids (SCFAs) and glucagon-like peptide-1 (GLP-1), which may protect dopaminergic neurons via the gut-brain axis.
View Article and Find Full Text PDFPlanta
January 2025
Plant-Soil Ecology Laboratory, Center for Ecology, Evolution and Environmental Changes. Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
Inoculation with the PGPB Herbaspirillum seropedicae shapes both the structure and putative functions of the wheat microbiome and causes changes in the levels of various plant metabolites described to be involved in plant growth and health. Plant growth promoting bacteria (PGPB) can establish metabolic imprints in their hosts, contributing to the improvement of plant health in different ways. However, while PGPB imprints on plant metabolism have been extensively characterized, much less is known regarding those affecting plant indigenous microbiomes, and hence it remains unknown whether both processes occur simultaneously.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!