Temporal dynamics of soil dissolved organic carbon in temperate forest managed by prescribed burning in Northeast China.

Environ Res

Department of Forest Sciences/ Institute for Atmospheric Sciences and Earth System Research (INAR), Department of Physics, University of Helsinki, 00014 Helsinki, Finland.

Published: November 2023

Dissolved organic carbon (DOC) is an important function of soil organic carbon and sensitive to environmental disturbance. Few studies have explored the variations in soil DOC dynamics and effects on soil physicochemical properties following prescribed burnings. In this study, Pinus koraiensis plantation forests in Northeast China were selected and subjected to prescribed burning in early November 2018. Soil DOC and different soil physicochemical and biological properties in the 0-10 cm and 10-20 cm soil layers were sampled six times within two years after a prescribed burning. In this study, some soil physicochemical (SOC, TN, and ST) and microbial biomass properties (MBC) recovered within two years after a prescribed burning. Compared to the unburned control stands, the post-fire soil DOC concentrations in the upper and lower soil layers increased by 16% and 12%, respectively. Soil DOC concentrations varied with sampling time, and peaked one year after the prescribed burning. Our results showed that soil chemical properties (NH-N and pH) rather than biological properties (microbial biomass) were the main driving factors for changes in post-fire soil DOC concentrations. Current study provides an important reference for post-fire and seasonal soil C cycling in plantation forests of Northeast China.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.117065DOI Listing

Publication Analysis

Top Keywords

prescribed burning
20
soil doc
20
soil
14
organic carbon
12
northeast china
12
soil physicochemical
12
doc concentrations
12
dissolved organic
8
plantation forests
8
forests northeast
8

Similar Publications

Prescribed burning effects on carbon and nutrient cycling processes in peatlands of Greater Khingan Mountains, Northeast China.

Sci Total Environ

January 2025

State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Shengbei Street 4888, 130102 Changchun, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Shengbei Street 4888, 130102 Changchun, China. Electronic address:

Peatlands are significant global carbon sinks; however, their carbon storage functions are vulnerable to human activities. In the Greater Khingan Mountains of Northeast China, where forest and peatland ecosystems are interspersed extensively, prescribed burning is conducted annually on peatlands to prevent major forest fires. To investigate the effect of prescribed burning on carbon and nutrient cycling processes in peatlands, we conducted a three-year experiment in the Greater Khingan Mountains.

View Article and Find Full Text PDF

First use of cord blood platelet-rich plasma in the treatment of vulvar lichen sclerosus: a preliminary study towards a randomized controlled trial.

Blood Transfus

December 2024

Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico Milano, Milan, Italy.

Background: Although topical corticosteroids (TCS) represent first-line treatment for vulvar lichen sclerosus (VLS) and as such should be prescribed to all women at time of diagnosis, approximately 30% of patients do not experience complete symptom resolution following such treatment. TCS may not effectively improve vulvar trophism and elasticity, both of which are crucial for sexual function. Owing to its regenerative and healing properties, cord blood platelet-rich plasma (CB-PRP) may represent an efficacious supplementary therapy, to be administered following first line treatment with TCS.

View Article and Find Full Text PDF

Changes in climate and land-use have significantly increased both the frequency and intensity of wildland fires globally, exacerbating the potential for hazardous impacts on human health. A better understanding of particle exposure concentrations and scenarios is crucial for developing mitigation strategies to reduce the health risks. Here, PM and black carbon (BC) concentrations were monitored during wildland fires between 2022-2024, in fire-prone areas in Catalonia (NE Spain), by means of personal monitors (AirBeam2 and Micro-aethalometers AE51 and MA200).

View Article and Find Full Text PDF

Introduction: Enterally-based resuscitation (EResus) is safe, efficacious, and has operational advantages, particularly in low-resource settings. However, there is a lack of real-world effectiveness studies and evidence-based protocols, which hinders implementation. To address this gap, we conducted a feasibility study ahead of a randomized controlled trial (RCT) of enterally based versus usual resuscitation at a tertiary burn center in Nepal which had no prior clinical trial experience.

View Article and Find Full Text PDF

Fuel accumulation shapes post-fire fuel decomposition through soil heating effects on plants, fungi, and soil chemistry.

Sci Total Environ

January 2025

University of Kansas, Kansas Biological Survey, 2101 Constant Avenue, Takeru Higuchi Hall, Lawrence, KS 66047, USA; University of Kansas, Ecology & Evolutionary Biology, 1200 Sunnyside Avenue Haworth Hall, Lawrence, KS 66045, USA.

Forty percent of terrestrial ecosystems require recurrent fires driven by feedbacks between fire and plant fuels. The accumulation of fine fuels in these ecosystems play a key role in fire intensity, which alters soil nutrients and shapes soil microbial and plant community responses to fire. Changes to post-fire plant fuel production are well known to feed back to future fires, but post-fire decomposition of new fuels is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!