Pharmaceutical and personal care products (PPCPs) degradation and microbial characteristics of low-temperature operation combined with constructed wetlands.

Chemosphere

Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China; College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Hebei Mining Area Ecological Restoration Industry Technology Research Institute, Tangshan, 063000, PR China; College of Mining Engineering, North China University of Science and Technology, Tangshan, PR China. Electronic address:

Published: November 2023

Emerging contaminants (ECs), which are present in water bodies, could cause global environmental and human health problems. These contaminants originate from various sources such as hospitals, clinics, households, and industries. Additionally, they can also indirectly enter the water supply through runoff from agriculture and leachate from landfills. ECs, specifically Pharmaceutical and personal care products (PPCPs), are causing widespread concern due to their contribution to persistent water pollution. Traditional approaches often involve expensive chemicals and energy or result in the creation of by-products. This study developed a practical and environmentally-friendly method for removing PPCPs, which involved combining and integrating various techniques. To implement this method, it was necessary to establish and used a field simulator based on the real-life scenario. Based on the data analysis, the average removal rates of COD, TP, TN, and NH-N were 57%, 59%, 63%, and 73%, respectively. the removal rate of PPCPs by CCWs was found to be 82.7% after comparing samples that were not treated by constructed wetlands and those that were treated. Combined constructed wetlands (CCWs) were found to effectively remove PPCPs from water. This is due to the combined action of plant absorption, absorption, and biodegradation by microorganisms living in the wetlands. Interestingly, the wetland plant reed had been shown to play an important role in removing these pollutants. Microbial degradation was the most important pathway for PPCPs removal in CCWs. Carbamazepine was selected as a typical PPCP for analysis. In addition, the microbial community structure of the composite filler was also investigated. High-throughput sequencing confirmed that the dominant bacteria had good adaptability to PPCPs. This technique not only reduced the potential environmental impact but also served as a foundation for further research on the use of constructed wetlands for the treatment of PPCPs contaminated water bodies and its large-scale implementation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.140039DOI Listing

Publication Analysis

Top Keywords

constructed wetlands
16
pharmaceutical personal
8
personal care
8
care products
8
ppcps
8
products ppcps
8
combined constructed
8
water bodies
8
wetlands
5
water
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!