The epidermis is a constantly renewing stratified epithelial tissue that provides essential protective barrier functions. The major barrier is located at the outermost layers of the epidermis, formed by terminally differentiated keratinocytes reinforced by proteins of their cornified envelope and sequestered intercellular lipids. Disruptions to epidermal differentiation characterize various skin disorders. ZNF750 is an epithelial transcription factor essential for in vitro keratinocyte differentiation, whose truncating mutation in humans causes autosomal dominant psoriasis-like skin disease. In this study, we utilized an epidermal-specific Znf750 conditional knockout mouse model to uncover the role ZNF750 plays in epidermal development. We show that deletion of Znf750 in the developing skin does not block epidermal differentiation completely, suggesting in vivo compensatory feedback mechanisms, although it does result in impaired barrier function and perinatal lethality. Molecular dissection revealed ultrastructural defects in the differentiated layers of the epidermis, accompanied by alterations in the expression of ZNF750-dependent genes encoding key cornified envelope precursor proteins and lipid-processing enzymes, including gene subsets known to be mutated in human skin diseases involving impaired barrier function. Together, our findings provide molecular insights into the pathogenesis of human skin disease by linking ZNF750 to a subset of epidermal differentiation genes involved in barrier formation pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jid.2023.08.009 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Clean Energy Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
Thermoelectric (TE) devices recycle high-temperature waste-heat efficiently, but waste-heat below sub-250 °C remains uncaptured. As promoting full autonomy for the Internet of Things (IoT), we present a TE generator using multilayered pseudo--type GaN/TiN/GaN and -type TiO/TiN/TiO TE one-leg devices, where heterozygous of outer/inner layers demonstrates the functions of a colossal Seebeck coefficient ( = +15,000 μV K) with phonon-assist hopping, controlling by the porosity for reducing thermal conductivity (κ), a high electric conductivity (σ) with reducing κ by outer layers, and σ- coexistence over singular curve by the asymmetric electrode configuration. is elucidated hopping among inner grains and the space charge (SC) grain boundary (GB) of 100 μm regions within Debye length.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium.
The local environment of the active site, such as the confinement of hydronium ions within zeolite pores, significantly influences catalytic turnover, similar to enzyme functionality. This study explores these effects in the hydrolysis of guaiacols─lignin-derived compounds─over zeolites in water. In addition to the interesting catechol products, this reaction is advantageous for study due to its bimolecular hydrolysis pathway, which involves a single energy barrier and no intermediates, simplifying kinetic studies and result interpretation.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Medicine, Department of Health Sciences, Lund University, Lund, Sweden.
Despite the potential of smart home technologies (SHT) to support everyday activities, the implementation rate of such technology in the homes of older adults remains low. The overall aim of this study was to explore factors involved in the decision-making process in adopting SHT among current and future generations of older adults. We also aimed to identify and understand barriers and facilitators that can better support older adults' engagement in everyday activities.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
The copolymerization of ethylene with polar monomers presents a significant challenge. While palladium catalysts have shown promise, nickel catalysts are more economical but suffer from poor activity. Previous studies suggest that the isomerization step involved in the nickel-catalyzed polymerization may influence the catalyst activities.
View Article and Find Full Text PDFDisabil Rehabil Assist Technol
January 2025
School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
Background: Advancements in wearable technology have created new opportunities to monitor stroke survivors' behaviors in daily activities. Research insights are needed to guide its adoption in clinical practice, address current gaps, and shape the future of stroke rehabilitation. This project aims to: (1) Understand stroke rehabilitation researchers' perspectives on the opportunities, challenges, and clinical relevance of wearable technology for stroke rehabilitation, and (2) Identify necessary next steps to integrate wearable technology in research and clinical practice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!