A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Learning domain invariant representations by joint Wasserstein distance minimization. | LitMetric

Learning domain invariant representations by joint Wasserstein distance minimization.

Neural Netw

Machine Learning group, Technische Universität Berlin, 10587 Berlin, Germany; Berlin Institute for the Foundations of Learning and Data - BIFOLD, 10587 Berlin, Germany; Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany. Electronic address:

Published: October 2023

Domain shifts in the training data are common in practical applications of machine learning; they occur for instance when the data is coming from different sources. Ideally, a ML model should work well independently of these shifts, for example, by learning a domain-invariant representation. However, common ML losses do not give strong guarantees on how consistently the ML model performs for different domains, in particular, whether the model performs well on a domain at the expense of its performance on another domain. In this paper, we build new theoretical foundations for this problem, by contributing a set of mathematical relations between classical losses for supervised ML and the Wasserstein distance in joint space (i.e. representation and output space). We show that classification or regression losses, when combined with a GAN-type discriminator between domains, form an upper-bound to the true Wasserstein distance between domains. This implies a more invariant representation and also more stable prediction performance across domains. Theoretical results are corroborated empirically on several image datasets. Our proposed approach systematically produces the highest minimum classification accuracy across domains, and the most invariant representation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2023.07.028DOI Listing

Publication Analysis

Top Keywords

wasserstein distance
12
model performs
8
invariant representation
8
domains
5
learning domain
4
domain invariant
4
invariant representations
4
representations joint
4
joint wasserstein
4
distance minimization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!