A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Increased ascorbic acid synthesis by overexpression of AcGGP3 ameliorates copper toxicity in kiwifruit. | LitMetric

Increased ascorbic acid synthesis by overexpression of AcGGP3 ameliorates copper toxicity in kiwifruit.

J Hazard Mater

CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China. Electronic address:

Published: October 2023

The widespread application of copper (Cu) -based fertilizers and pesticides could increase the accumulation of Cu in kiwifruit. According to a global survey, red- and yellow-fleshed kiwifruit contained more elevated amounts of Cu than green-fleshed kiwifruit due to weaker disease resistance and higher use of Cu pesticides. Intriguingly, our research revealed that external and endogenous ascorbic acid (AsA) reduced the phenotypic and physiological injury of Cu toxicity in kiwifruit. Cu stress assays and transcriptional analysis have shown that Cu treatment for 12 h significantly increased the AsA content in kiwifruit leaves and up-regulated key genes involved in AsA biosynthesis, such as GDP-L-galactose phosphorylase3 (GGP3) and GDP-mannose-3',5'-epimerase (GME). Overexpressing GGP3 in transgenic kiwifruit significantly increased the endogenous AsA content of kiwifruit, which was beneficial in mitigating Cu toxicity by decreasing levels of reactive oxygen species, malondialdehyde, and electrolyte leakage, as well as reducing damage to the chloroplast structure and photosystem II. This study presented a novel strategy to ameliorate plant Cu stress by increasing the endogenous antioxidant (AsA) content through transgenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.132393DOI Listing

Publication Analysis

Top Keywords

asa content
12
ascorbic acid
8
kiwifruit
8
toxicity kiwifruit
8
content kiwifruit
8
asa
5
increased ascorbic
4
acid synthesis
4
synthesis overexpression
4
overexpression acggp3
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!