Parkinson's disease progression: Increasing expression of an invariant common core subnetwork.

Neuroimage Clin

Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States; Molecular Medicine and Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, United States. Electronic address:

Published: September 2023

Notable success has been achieved in the study of neurodegenerative conditions using reduction techniques such as principal component analysis (PCA) and sparse inverse covariance estimation (SICE) in positron emission tomography (PET) data despite their widely differing approach. In a recent study of SICE applied to metabolic scans from Parkinson's disease (PD) patients, we showed that by using PCA to prespecify disease-related partition layers, we were able to optimize maps of functional metabolic connectivity within the relevant networks. Here, we show the potential of SICE, enhanced by disease-specific subnetwork partitions, to identify key regional hubs and their connections, and track their associations in PD patients with increasing disease duration. This approach enabled the identification of a core zone that included elements of the striatum, pons, cerebellar vermis, and parietal cortex and provided a deeper understanding of progressive changes in their connectivity. This subnetwork constituted a robust invariant disease feature that was unrelated to phenotype. Mean expression levels for this subnetwork increased steadily in a group of 70 PD patients spanning a range of symptom durations between 1 and 21 years. The findings were confirmed in a validation sample of 69 patients with up to 32 years of symptoms. The common core elements represent possible targets for disease modification, while their connections to external regions may be better suited for symptomatic treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491857PMC
http://dx.doi.org/10.1016/j.nicl.2023.103488DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
8
common core
8
disease progression
4
progression increasing
4
increasing expression
4
expression invariant
4
invariant common
4
subnetwork
4
core subnetwork
4
subnetwork notable
4

Similar Publications

Objective: To explore the impact of aerobic and resistance training on walking and balance abilities (UPDRS-III, Gait Velocity, Mini-BESTest, and TUG) in individuals with Parkinson's disease (PD).

Method: All articles published between the year of inception and July 2024 were obtained from PubMed, Embase, and Web of Science. Meta-analysis was conducted with RevMan 5.

View Article and Find Full Text PDF

Mild behavioral impairment in idiopathic REM sleep behavior disorder and Lewy body disease continuum.

J Neural Transm (Vienna)

January 2025

Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University of College of Medicine, Seoul, Republic of Korea.

To investigate the clinical impact of mild behavioral impairment (MBI) in a predefined cohort with Lewy body disease (LBD) continuum. Eighty-four patients in the LBD continuum participated in this study, including 35 patients with video-polysomnography-confirmed idiopathic REM sleep behavior disorder (iRBD) and 49 clinically established LBD. Evaluations included the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), neuropsychological tests, and MBI Checklist (MBI-C).

View Article and Find Full Text PDF

Objective: Isolated rapid eye movement (REM) sleep behavior disorder (iRBD) is, in most cases, an early stage of Parkinson's disease or related disorders. Diagnosis requires an overnight video-polysomnogram (vPSG), however, even for sleep experts, interpreting vPSG data is challenging. Using a 3D camera, automated analysis of movements has yielded high accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!