Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the context of global climate change, organisms in their natural habitats usually suffer from unfavorable climatic conditions together with environmental pollution. Temperature and humidity (or moisture) are two central climatic factors, while their relationships with the toxicity of contaminants are not well understood. This review provides a synthesis of existing knowledge on important interactions between contaminant toxicity and climatic conditions of unfavorable temperature, soil moisture, and air humidity. Both high temperature and low moisture can extensively pose severe combined hazards with organic pollutants, heavy metal ions, nanoparticles, or microplastics. There is more information on the combined effects on animalia than on other kingdoms. Prevalent mechanisms underlying their joint effects include the increased bioavailability and bioaccumulation of contaminants, modified biotransformation of contaminants, enhanced induction of oxidative stress, accelerated energy consumption, interference with cell membranes, and depletion of bodily fluids. However, the interactions of contaminants with low temperature or high humidity/moisture, particularly on plants and microorganisms, are relatively vague and need to be further revealed. This work emphasizes that the co-exposure of chemical and physical stressors results in detrimental effects generally greater than those caused by either stressor. It is necessary to take this into consideration in the ecological risk assessment of both environmental contamination and climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2023.115432 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!