A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-cell type and multi-level graph aggregation network for cancer grading in pathology images. | LitMetric

Multi-cell type and multi-level graph aggregation network for cancer grading in pathology images.

Med Image Anal

School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea. Electronic address:

Published: December 2023

In pathology, cancer grading is crucial for patient management and treatment. Recent deep learning methods, based upon convolutional neural networks (CNNs), have shown great potential for automated and accurate cancer diagnosis. However, these do not explicitly utilize tissue/cellular composition, and thus difficult to incorporate the existing knowledge of cancer pathology. In this study, we propose a multi-cell type and multi-level graph aggregation network (MMGA-Net) for cancer grading. Given a pathology image, MMGA-Net constructs multiple cell graphs at multiple levels to represent intra- and inter-cell type relationships and to incorporate global and local cell-to-cell interactions. In addition, it extracts tissue contextual information using a CNN. Then, the tissue and cellular information are fused to predict a cancer grade. The experimental results on two types of cancer datasets demonstrate the effectiveness of MMGA-Net, outperforming other competing models. The results also suggest that the information fusion of multiple cell types and multiple levels via graphs is critical for improved pathology image analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2023.102936DOI Listing

Publication Analysis

Top Keywords

cancer grading
12
multi-cell type
8
type multi-level
8
multi-level graph
8
graph aggregation
8
aggregation network
8
grading pathology
8
pathology image
8
multiple cell
8
multiple levels
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!