Bacterial infection is a crucial complication in implant restoration, in particular in permanent skin-penetrating implants. Therein, the resulting gap between transcutaneous implant and skin represents a permanent infection risk, limiting the field of application and the duration of application. To overcome this limitation, a tight physiological connection is required to achieve a biological and mechanical welding for a long-term stable closure including self-healing probabilities. This study describes a new approach, wherein the implant is connected covalently to a highly porous electrospun fleece featuring physiological dermal integration potential. The integrative potential of the scaffold is shown in vitro and confirmed in vivo, further demonstrating tissue integration by neovascularization, extracellular matrix formation, and prevention of encapsulation. To achieve a covalent connection between fleece and implant surface, self-initiated photografting and photopolymerization of hydroxyethylmethacrylate is combined with a new crosslinker (methacrylic acid coordinated titanium-oxo clusters) on proton-abstractable implant surfaces. For implant modification, the attached fleece is directed perpendicular from the implant surface into the surrounding dermal tissue. First in vitro skin implantations demonstrate the implants' dermal integration capability as well as wound closure potential on top of the fleece by epithelialization, establishing a bacteria-proof and self-healing connection of skin and transcutaneous implant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469180 | PMC |
http://dx.doi.org/10.1002/adhm.202301131 | DOI Listing |
Sci Rep
December 2024
Laboratorio de Pesquisa em Cirurgia Toracica, Departamento de Cardiopneumologia, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
Currently, the barrier to successful lung transplantation is ischemia and reperfusion injury, which can lead to the development of bronchiolitis obliterans. Paclitaxel and methotrexate are drugs known to inhibit cell proliferation and have anti-inflammatory effects, and the association of these drugs with cholesterol-rich nanoparticles has been shown to be beneficial in the treatment of other transplanted organs. Thirty-three male Sprague Dawley rats were divided into 3 groups: Basal group, no intervention; Control group, received only nanoparticles; Drug group, paclitaxel and methotrexate treatment.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mechanical Engineering, Sejong University, Seoul, Republic of Korea.
Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Orthopedic Surgery, Arthroscopy and Joint Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
The humeral head is the second most common anatomical site of osteonecrosis after the femoral head. Studies have reported satisfactory clinical outcomes after shoulder arthroplasty to treat osteonecrosis of the humeral head (ONHH). However, there are concerns regarding implant longevity in relatively young patients.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Medical and Surgical Sciences, Institute of Cardiology, University of Bologna, Policlinico S.Orsola-Malpighi, via Massarenti 9, Bologna, 40138, Italy.
Cardiac implantable electronic devices infections (CIEDI) are associated with poor survival despite the improvement in transvenous lead extraction (TLE). Aetiology and systemic involvement are driving factors of clinical outcomes. The aim of this study was to explore their contribute on overall mortality.
View Article and Find Full Text PDFBAY 2413555 is a novel selective and reversible positive allosteric modulator of the type 2 muscarinic acetylcholine (M2) receptor, aimed at enhancing parasympathetic signaling and restoring cardiac autonomic balance for the treatment of heart failure (HF). This study tested the safety, tolerability and pharmacokinetics of this novel therapeutic option. REMOTE-HF was a multicenter, double-blind, randomized, placebo-controlled, phase Ib dose-titration study with two active arms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!