Electrically insulating PBO/MXene film with superior thermal conductivity, mechanical properties, thermal stability, and flame retardancy.

Nat Commun

Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, PR China.

Published: September 2023

Constructing flexible and robust thermally conductive but electrically insulating composite films for efficient and safe thermal management has always been a sought-after research topic. Herein, a nacre-inspired high-performance poly(p-phenylene-2,6-benzobisoxazole) (PBO)/MXene nanocomposite film was prepared by a sol-gel-film conversion method with a homogeneous gelation process. Because of the as-formed optimized brick and mortar structure, and the strong bridging and caging effects of the fine PBO nanofibre network on the MXene nanosheets, the resulting nanocomposite film is electrically insulating (2.5 × 10 Ω cm), and exhibits excellent mechanical properties (tensile strength of 416.7 MPa, Young's modulus of 9.1 GPa and toughness of 97.3 MJ m). More importantly, the synergistic orientation of PBO nanofibres and MXene nanosheets endows the film with an in-plane thermal conductivity of 42.2 W m K. The film also exhibits excellent thermal stability and flame retardancy. This work broadens the ideas for preparing high-performance thermally conductive but electrically insulating composites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475028PMC
http://dx.doi.org/10.1038/s41467-023-40707-xDOI Listing

Publication Analysis

Top Keywords

electrically insulating
16
thermal conductivity
8
mechanical properties
8
thermal stability
8
stability flame
8
flame retardancy
8
thermally conductive
8
conductive electrically
8
nanocomposite film
8
mxene nanosheets
8

Similar Publications

We report herein two families of porous coordination clusters (PCCs) with 216 nuclearity (M120RE96 or PCC-216MR) and 300 nuclearity (Co144Gd156 or PCC-300CG). For the first family M could be either nickel or cobalt, and RE = Pr, Nd, Sm, Eu, and Gd; while the latter features the highest nuclearity of transition-rare earth metal clusters. Characterized by their cube-like, hollow structures, these clusters exhibit the ability to absorb N2 and CO2.

View Article and Find Full Text PDF

Laser reduction of graphene oxide (GO) is a promising approach for achieving flexible, robust, and electrically conductive graphene/polymer composites. Resulting composite materials show significant technological potential for energy storage, sensing, and bioelectronics. However, in the case of insulating polymers, the properties of electrodes show severely limited performance.

View Article and Find Full Text PDF

Transitions seen in the electric properties of water-absorbable poly(2,5-benzimidazole) (ABPBI) films were confirmed by electric conductivity, dielectric constant, and time-domain nuclear magnetic resonance (NMR) measurements. The electric resistance of the films was measured at room temperature using a high-resistance meter, and the dielectric constant at room temperature was measured using an LCR meter in the frequency range of 90 Hz to 8 MHz. The water absorption ratio at equilibrium absorption for the films was 37%, which corresponded to a volume fraction of water of 0.

View Article and Find Full Text PDF

Flexible, wearable, piezoresistive sensors have significant potential for applications in wearable electronics and electronic skin fields due to their simple structure and durability. Highly sensitive, flexible, piezoresistive sensors with the ability to monitor laryngeal articulatory vibration supply a new, more comfortable and versatile way to aid communication for people with speech disorders. Here, we present a piezoresistive sensor with a novel microstructure that combines insulating and conductive properties.

View Article and Find Full Text PDF

In this paper, a new sensor structure is designed, which consists of a metal-insulator-metal (MIM) waveguide and a circular protrusion and a rectangular triangular cavity (CPRTC). The characterization of nanoscale sensors is considered using an approximate numerical method (finite element method). The simulation results show that the sharp asymmetric resonance generated by the interaction between the discrete narrow-band mode and the continuous wideband mode is called Fano resonance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!