Low-dose carboplatin modifies the tumor microenvironment to augment CAR T cell efficacy in human prostate cancer models.

Nat Commun

Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia.

Published: September 2023

Chimeric antigen receptor (CAR) T cells have transformed the treatment landscape for hematological malignancies. However, CAR T cells are less efficient against solid tumors, largely due to poor infiltration resulting from the immunosuppressive nature of the tumor microenvironment (TME). Here, we assessed the efficacy of Lewis Y antigen (Le)-specific CAR T cells in patient-derived xenograft (PDX) models of prostate cancer. In vitro, Le CAR T cells directly killed organoids derived from androgen receptor (AR)-positive or AR-null PDXs. In vivo, although Le CAR T cells alone did not reduce tumor growth, a single prior dose of carboplatin reduced tumor burden. Carboplatin had a pro-inflammatory effect on the TME that facilitated early and durable CAR T cell infiltration, including an altered cancer-associated fibroblast phenotype, enhanced extracellular matrix degradation and re-oriented M1 macrophage differentiation. In a PDX less sensitive to carboplatin, CAR T cell infiltration was dampened; however, a reduction in tumor burden was still observed with increased T cell activation. These findings indicate that carboplatin improves the efficacy of CAR T cell treatment, with the extent of the response dependent on changes induced within the TME.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475084PMC
http://dx.doi.org/10.1038/s41467-023-40852-3DOI Listing

Publication Analysis

Top Keywords

car cell
16
car cells
16
tumor microenvironment
8
car
8
prostate cancer
8
tumor burden
8
cell infiltration
8
tumor
5
cell
5
cells
5

Similar Publications

Severe hypophosphatemia following idecabtagene vicleucel regardless of the severity of cytokine release syndrome.

Cytotherapy

January 2025

Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan; Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.

Background Aims: Hypophosphatemia has been recently recognized adverse event in chimeric antigen receptor (CAR)-T cell therapy, complicating 70-75% of patients. Severe hypophosphatemia can cause cytokine release syndrome (CRS)-like symptoms, such as respiratory and cardiovascular dysfunction. Some reports have described the association between inorganic phosphate (iP) and CRS in patients treated with tisagenlecleucel (tisa-cel), lisocabtagene maraleucel (liso-cel), axicabtagene ciloleucel (axi-cel).

View Article and Find Full Text PDF

Cell and gene therapy (CGT) products are emerging and innovative biopharmaceuticals that hold promise for treating diseases that are otherwise beyond the scope of conventional medicines. The evolution of CGT from a research idea to a promising therapeutic product is due to the complementary advancements across various scientific disciplines. First, the innovations and advancements in gene editing and delivery technology have provided fundamental tools to manipulate genes and cells for therapeutic pursuits.

View Article and Find Full Text PDF

We reported the pseudoprogression in an elderly patient with advanced gastric cancer after chimeric antigen receptor (CAR)-T cell therapy. The hepatic metastases enlarged 1 month after CAR-T cell infusion and then shrunk the next month as seen through computed tomography scanning. Based on a comprehensive evaluation that includes imaging, pathology, serum tumor markers, and clinical symptoms, we arrived at a diagnosis of pseudoprogression after CAR-T cell therapy, which has not been reported in previous studies.

View Article and Find Full Text PDF

Loading monocytes with magnetic nanoparticles enables their magnetic control without toxicity.

Front Bioeng Biotechnol

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany.

Background: With the help of superparamagnetic iron oxide nanoparticles (SPIONs), cells can be magnetically directed so that they can be accumulated at target sites. This principle can be used to make monocytes magnetically steerable in order to improve tumor accumulation, e.g.

View Article and Find Full Text PDF

Introduction: CD7 chimeric antigen receptor T-cell (CAR-T cell) therapy is an emerging method for treating hematological malignancies, and is another breakthrough in CAR-T cell therapy.

Methods: This study summarizes the currently published clinical research results on CD7 CAR-T cells and evaluates the safety and effectiveness of CD7 CAR-T cell therapy.

Results: Among the 13 studies included in this study, a total of 200 patients received CD7 CAR-T cell therapy, including 88 patients who received autologous CAR-T cells, 112 patients who received donor derived CAR-T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!