Background: An effective testing strategy is essential for pandemic control of the novel Coronavirus disease 2019 (COVID-19) caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Breath gas analysis can expand the available toolbox for diagnostic tests by using a rapid, cost-beneficial, high-throughput point-of-care test. We conducted a bi-center clinical pilot study in Germany to evaluate breath gas analysis using multi-capillary column ion mobility spectrometry (MCC-IMS) to detect SARS-CoV-2 infection.

Methods: Between September 23, 2020, and June 11, 2021, breath gas measurements were performed on 380 patients (SARS-CoV-2 real-time polymerase chain reaction (PCR) positive: 186; PCR negative: 194) presenting to the emergency department (ED) with respiratory symptoms.

Results: Breath gas analysis using MCC-IMS identified 110 peaks; 54 showed statistically significant differences in peak intensity between the SARS-CoV-2 PCR-negative and PCR-positive groups. A decision tree analysis classification resulted in a sensitivity of 83% and specificity of 86%, but limited robustness to dataset changes. Modest values for the sensitivity (74%) and specificity (52%) were obtained using linear discriminant analysis. A systematic search for peaks led to a sensitivity of 77% and specificity of 67%; however, validation by transferability to other data is questionable.

Conclusions: Despite identifying several peaks by MCC-IMS with significant differences in peak intensity between PCR-negative and PCR-positive samples, finding a classification system that allows reliable differentiation between the two groups proved to be difficult. However, with some modifications to the setup, breath gas analysis using MCC-IMS may be a useful diagnostic toolbox for SARS-CoV-2 infection.

Trial Registration: This study was registered at ClinicalTrials.gov on September 21, 2020 (NCT04556318; Study-ID: HC-N-H-2004).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474630PMC
http://dx.doi.org/10.1186/s40001-023-01284-3DOI Listing

Publication Analysis

Top Keywords

breath gas
20
gas analysis
16
ion mobility
8
mobility spectrometry
8
pilot study
8
september 2020
8
analysis mcc-ims
8
differences peak
8
peak intensity
8
pcr-negative pcr-positive
8

Similar Publications

Background: Despite the physiological advantages of positive end-expiratory pressure (PEEP), its optimal utilization during one-lung ventilation (OLV) remains uncertain. We aimed to investigate whether individualized PEEP titration by lung compliance is associated with a reduced risk of postoperative pulmonary complications during OLV.

Methods: We searched PubMed, Embase, and the Cochrane Central Register of Controlled Trials until April 1, 2024, to identify published randomized controlled trials that compared individualized PEEP titration by lung compliance with fixed PEEP during OLV.

View Article and Find Full Text PDF

Moderate grazing reduces while mowing increases greenhouse gas emissions from a steppe grassland: Key modulating function played by plant standing biomass.

J Environ Manage

January 2025

Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China. Electronic address:

Grassland represents one of the most expansive terrestrial ecosystems, exerting a profound influence on atmospheric greenhouse gas (GHG) levels within the broader context of global change. Both climate and land use changes play important roles in modulating grassland GHG emissions by directly or indirectly altering soil physical and chemical properties, especially soil temperature and inorganic nitrogen content. The optimal grassland management practices need to simultaneously meet the requirements of reducing GHG emissions, maintaining biological biodiversity, and ensuring productivity.

View Article and Find Full Text PDF

Recently, there has been growing interest in knowing the best hygrometry level during high-flow nasal oxygen and non-invasive ventilation (NIV) and its potential influence on the outcome. Various studies have shown that breathing cold and dry air results in excessive water loss by nasal mucosa, reduced mucociliary clearance, increased airway resistance, reduced epithelial cell function, increased inflammation, sloughing of tracheal epithelium, and submucosal inflammation. With the Coronavirus Disease 2019 pandemic, using high-flow nasal oxygen with a heated humidifier has become an emerging form of non-invasive support among clinicians.

View Article and Find Full Text PDF

This study investigated the effects of different protein sources on feed intake, nutrient, and energy utilization, growth performance, and enteric methane (CH4) emissions in growing beef cattle, also evaluated against a pasture-based diet. Thirty-two Holstein × Angus growing beef were allocated to four dietary treatments: a total mixed ration (TMR) including solvent-extracted soybean meal as the main protein source (SB; n = 8), TMR with local brewers' spent grains (BSG; n = 8), TMR with local field beans (BNS; n = 8), and a diet consisting solely of fresh-cut Italian ryegrass (GRA; n = 8). Every four weeks, animals were moved to digestibility stalls within respiration chambers to measure nutrient intakes, energy and nitrogen (N) utilization, and enteric CH4 emissions.

View Article and Find Full Text PDF

There is limited knowledge on diffusing capacity in scoliosis patients. It remains to be determined if impaired pulmonary diffusing capacity is mostly influenced by reduced alveolar-capillary membrane diffusing capacity (D), reduced pulmonary capillary blood volume (V) or both. This study aims to report findings from dual test gas pulmonary diffusing capacity for carbon monoxide and nitric oxide (D) with quantification of pulmonary diffusing capacity for carbon monoxide corrected for haemoglobin with a five s breath-hold (D) and nitric oxide with a five s breath-hold (D), D and V.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!