Purpose: Evaluate the therapeutic effect of a tomato lipidic extract (STE) in combination with selenium (Se) on rats with prostatic hyperplasia (PH) and to observe its possible mechanisms of action and synergism versus finasteride.
Materials And Methods: 54 male Wistar rats of nine weeks old were divided in Control (C), PH, Finasteride (F), STE, Se, F + STE, F + Se, STE + Se and F + STE + Se with testosterone enanthate (except C). After 4 weeks of treatment administration, prostate weight, bladder weight, diuresis, prooxidant and antioxidant activity, dihydrotestosterone (DHT), androgen receptor (AR) expression and anatomopathological analysis were determined.
Results: STE + Se decreased prostate weight 53.8% versus 28% in F group, also STE + Se decreased significatively glandular hyperplasia, prooxidant activity, DHT and AR expression and increased diuresis and antioxidant activity versus finasteride which increased MDA in prostate.
Conclusions: These results demonstrate a greater therapeutic and beneficial effect of tomato lipidic extract in combination with Se in young rats with PH with respect to finasteride without increase prooxidant activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582118 | PMC |
http://dx.doi.org/10.1007/s00345-023-04558-x | DOI Listing |
Front Plant Sci
January 2025
School of Life Sciences, East China Normal University, Shanghai, China.
Frequent and extreme drought exerts profound effects on vegetation growth and production worldwide. It is imperative to identify key genes that regulate plant drought resistance and to investigate their underlying mechanisms of action. Long-chain fatty acids and their derivatives have been demonstrated to participate in various stages of plant growth and stress resistance; however, the effects of medium-chain fatty acids on related functions have not been thoroughly studied.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia.
Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
Plants emit green leaf volatiles (GLVs) in response to biotic and abiotic stress. Receiver plants perceive GLVs as alarm cues resulting in activation of defensive or protective mechanisms. While this is well documented, it is not known how GLVs are perceived by receiver cells and what the structural determinants are for GLV activity.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China. Electronic address:
Crop diseases significantly threaten global food security, driving the need for innovative control strategies. This study explored using ZnO-TiO@MSC, a novel nanomaterial synthesized using a corn stover template, to enhance disease resistance in tomato plants. In vitro assays demonstrated potent antimicrobial activity of ZnO-TiO@MSC against the pathogen Pseudomonas syringae pv.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
Mediator25 (MED25) has been ascribed as a signal-processing and -integrating center that controls jasmonate (JA)-induced and MYC2-dependent transcriptional output. A better understanding of the regulation of MED25 stability will undoubtedly advance our knowledge of the precise regulation of JA signaling-related transcriptional output. Here, we report that Arabidopsis MED16 activates JA-responsive gene expression by promoting MED25 stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!