A multifunctional surgical suture with electroactivity assisted by oligochitosan/gelatin-tannic acid for promoting skin wound healing and controlling scar proliferation.

Carbohydr Polym

Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China; Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China. Electronic address:

Published: November 2023

Surgical wound closure is accomplished most frequently with sutures, optimally proceeding rapidly and without complication. However, surgical sutures can trigger foreign body reactions and incite abnormal collagen deposition. Sustained inflammation can result in abnormal wound healing with hypertrophic scar formation. Therefore, evolution of suture material to inhibit inflammation and scar formation is of great clinical significance. In the present study, commercial 3-0 PPDO [poly(p-dioxanone)] suture was used as the base material and modified by adding two layers: a drug-loaded layer and an electroactive layer. The former layer was curcumin (Cur) encapsulated by PLGA [poly (lactic-co-glycolic acid)] and the latter layer was composed of oligochitosan-gelatin/tannic acid/polypyrrole (OCS-GE/TA/PPy). The multifunctional sutures, named S@LC@CGTP, had desirable sustained-drug release properties in vitro where Cur could be released for 8 days due to the action of PLGA. The three-dimensional network structure of OCS-GE/TA ensured S@LC@CGTP against surface cracking and maintained electrical. Furthermore, using an in vivo experiment, S@LC@CGTP could attenuate inflammation and promote scar-free wound healing according to suppression of infiltrating inflammatory cells, down-regulation of TGF-β1 and collagen type I expression, and improved collagen arrangement. Cumulatively, we indicated that S@LC@CGTP suture material has great potential to facilitate optimal, nearly scarless healing of surgical incisions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2023.121236DOI Listing

Publication Analysis

Top Keywords

wound healing
12
scar formation
8
suture material
8
multifunctional surgical
4
suture
4
surgical suture
4
suture electroactivity
4
electroactivity assisted
4
assisted oligochitosan/gelatin-tannic
4
oligochitosan/gelatin-tannic acid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!