Stretchable materials have demonstrated great interest in wearable or implantable applications. Most of the existing hydrogels with high stretchability characteristics are based on double networks, exhibit large hysteresis loops, and cannot recover after deformation due to permanent rupture of network. Elastic, biodegradable, and biocompatible hydrogels are desirable for wound dressing of joints with frequent motions or post-surgical healing of mobile tissues. Here, we show a simple strategy for the preparation of a hyaluronic acid (HA) single-network hydrogel that can be stretchable and highly elastic without the addition of other components/partners or complicated processes of preparation. Our strategy relies on the use of high M HA to create a chemical hydrogel in which densely entangled HA chains are tied together by a small number of covalent bonds. While the presence of covalent cross-links can prevent disintegration of the HA network, entanglements endow the hydrogel with high stretchability through transmission of tension along the length of the long HA chains. The stretching-relaxation cycles show negligible hysteresis and perfect recovery of material after the release of force. The diminution of M together with increasing the concentration or cross-linker amount leads to brittle hydrogels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2023.121212DOI Listing

Publication Analysis

Top Keywords

hyaluronic acid
8
acid single-network
8
single-network hydrogel
8
hydrogel high
8
high stretchability
8
hydrogel
4
high
4
high stretchable
4
stretchable elastic
4
elastic properties
4

Similar Publications

CD44/Integrin β1 Association Drives Fast Motility on Hyaluronic Acid Substrates.

J Cell Physiol

January 2025

Department of Biosciences & Bioengineering, IIT Bombay, Mumbai, India.

In addition to proteins such as collagen (Col) and fibronectin, the extracellular matrix (ECM) is enriched with bulky proteoglycan molecules such as hyaluronic acid (HA). However, how ECM proteins and proteoglycans collectively regulate cellular processes has not been adequately explored. Here, we address this question by studying cytoskeletal and focal adhesion organization and dynamics on cells cultured on polyacrylamide hydrogels functionalized with Col, HA and a combination of Col and HA (Col/HA).

View Article and Find Full Text PDF

Introduction: Nanobubble ozone stored in hyaluronic acid-decorated liposomes (patent application PCT/TR2022/050177) was used, and the Minimum Inhibitory Concentration (MIC) was found to be 1562 ppm. (patient isolate), (patient isolate), (MRSA) (ATCC12493), and (ATCC25922) bacteria, which are hospital-acquired and healthcare-associated infections, were used. A time-dependent efficacy study was conducted at 1600 ppm.

View Article and Find Full Text PDF

Phase-separating Pt(IV)-graft-glycopeptides sequentially sensing pH and redox for deep tumor penetration and targeting chemotherapy.

J Control Release

January 2025

State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China. Electronic address:

Active-targeting nanomedicines have been widely employed in cancer treatment for increasing therapeutic index. However, the limited permeability caused by the binding site barrier (BSB) and size hindrances compromises their clinical antitumor efficacy in patients. Herein, learning from the liquid-liquid phase separation (LLPS) of bio-macromolecules, we report phase-separating glycopeptides (HEP) from polyhistidine (PHis) grafted hyaluronic acid (HA), which can sense the tumor extracellular pH and concomitantly overcome size and BSB dilemmas for enhanced tumor penetration.

View Article and Find Full Text PDF

Tumor and intratumoral pathogen cascade-targeting photothermal nanotherapeutics for boosted immunotherapy of colorectal cancer.

J Control Release

January 2025

State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China. Electronic address:

Clinical benefits of immunotherapy in colorectal cancer (CRC) are limited due to the low immunogenicity and immunosuppressive tumor microenvironment. Fusobacterium nucleatum (Fn) is discovered to colonize CRC tumors and dampen immunotherapy by fostering an immunosuppressive TME. Herein, a controllable "Shielding-deshielding" N-acetylgalactosamine (GalNAc)-derived photothermal nanotherapeutic is developed to mediate cascade targeting toward tumor and intratumoral Fn for enhanced photothermal-immunotherapy.

View Article and Find Full Text PDF

Disclosing long-term tolerance, efficacy and penetration properties of hyaluronic acid-coated latanoprost-loaded liposomes as chronic glaucoma therapy.

J Control Release

January 2025

Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), Madrid, Spain; Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; Health Research Institute (Instituto de Investigación Sanitaria) of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain; University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain. Electronic address:

Frequent topical administration of hypotensive eye drops in glaucoma patients may lead to the development of dry eye disease (DED) symptoms, because of tear film destabilization and the adverse effects associated with antiglaucoma formulations. To address all this, in the current study preservative-free latanoprost-loaded (0.005 % w/v) synthetic phosphatidylcholine (1,2-dioleoyl-sn-glycero-3-phosphocholine 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!