Starch/polyvinyl alcohol with ionic liquid/graphene oxide enabled highly tough, conductive and freezing-resistance hydrogels for multimodal wearable sensors.

Carbohydr Polym

State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.

Published: November 2023

With ever-growing demand for eco-friendly materials for wearable electronics, biopolymer-based hydrogels have drawn significant attention. As one of the most abundant and biodegradable biopolymers, starch-based hydrogels have a great potential for wearable electronics. However, mechanical fragility, low conductivity and subzero freeze restrict their applications. Here, a multifunctional hydrogel was facilely fabricated by integrating ionic liquid and graphene oxide into potato starch/polyvinyl alcohol skeleton via a green physical-crosslinking method. The abundant hydrogen-bond and electrostatic interactions endowed the hydrogel with excellent stretchability (657.5 %), strength (0.64 MPa), high conductivity (1.98 S·m) and good anti-freezing property (< -20 °C). Multiple characterizations and theoretical simulation (DFT) were combined to understand and confirm the interactions among different components. Taking advantage of these properties, multimodal wearable sensors were constructed for sensing tension (gauge factor: 6.04), compression (gauge factor: 3.27) and temperature (sensitivity: 0.71 %/°C), which are applied for monitoring human motion, daily-life pressure and body temperature. The sensor had a good anti-fatigue property with stable signals during 2000 cycles. Moreover, the sensor can effectively recognize handwriting and perform human-computer interaction. This work provides a promising route to develop sustainable and multifunctional biopolymer hydrogels for wearable sensors with versatile applications in human health, exercise monitors and soft robots.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2023.121262DOI Listing

Publication Analysis

Top Keywords

wearable sensors
12
starch/polyvinyl alcohol
8
multimodal wearable
8
wearable electronics
8
gauge factor
8
wearable
5
alcohol ionic
4
ionic liquid/graphene
4
liquid/graphene oxide
4
oxide enabled
4

Similar Publications

Measuring lower extremity impact acceleration is a common strategy to identify runners with increased injury risk. However, existing axial peak tibial acceleration (PTA) thresholds for determining high-impact runners typically rely on small samples or fixed running speeds. This study aimed to describe the distribution of axial PTA among runners at their preferred running speed, determine an appropriate adjustment for investigating impact magnitude at different speeds, and compare biomechanics between runners classified by impact magnitude.

View Article and Find Full Text PDF

Reliability and Accuracy of the Fitbit Charge 4 Photoplethysmography Heart Rate Sensor in Ecological Conditions: Validation Study.

JMIR Mhealth Uhealth

January 2025

ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Littoral Côte d'Opale, Univ. Lille, Univ. Artois, 189b, Avenue Maurice Schumann, Centre Universitaire des Darses, Dunkerque, 59375, France, 33 328237357.

Background: Wrist-worn photoplethysmography (PPG) sensors allow for continuous heart rate (HR) measurement without the inconveniences of wearing a chest belt. Although green light PPG technology reduces HR measurement motion artifacts, only a limited number of studies have investigated the reliability and accuracy of wearables in non-laboratory-controlled conditions with actual specific and various physical activity movements.

Objective: The purpose of this study was to (1) assess the reliability and accuracy of the PPG-based HR sensor of the Fitbit Charge 4 (FC4) in ecological conditions and (2) quantify the potential variability caused by the nature of activities.

View Article and Find Full Text PDF

Objectives: Freezing of Gait (FOG) is one of the disabling symptoms in patients with Parkinson's Disease (PD). While it is difficult to early detect because of the sporadic occurrence of initial freezing events. Whether the characteristic of gait impairments in PD patients with FOG during the 'interictal' period is different from that in non-FOG patients is still unclear.

View Article and Find Full Text PDF

The importance of trunk motion in wearable based infant spontaneous movement analysis.

Sci Rep

January 2025

Department of Physical Therapy, Faculty of Medicine, Universidad de Chile, Independencia 1027, Independencia, 8380453, Chile.

The characteristics of spontaneous movements in infants are essential for the early detection of neurological pathologies, with the Prechtl method being a widely recognized approach. While the Prechtl method is effective in predicting motor risks, its reliance on the evaluator's expertise limits its scalability, particularly in low-income areas. In such contexts, the use of inertial sensors combined with automated analysis presents a promising accessible alternative; however, more research is necessary to get results comparable to those of the Precht method.

View Article and Find Full Text PDF

Wireless power-up and readout from a label-free biosensor.

Biomed Microdevices

January 2025

Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA.

Wearable and implantable biosensors have rapidly entered the fields of health and biomedicine to diagnose diseases and physiological monitoring. The use of wired medical devices causes surgical complications, which can occur when wires break, become infected, generate electrical noise, and are incompatible with implantable applications. In contrast, wireless power transfer is ideal for biosensing applications since it does not necessitate direct connections between measurement tools and sensing systems, enabling remote use of the biosensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!