Type 1 diabetes mellitus (T1DM) is characterized by life-threatening absolute insulin deficiency. Although ω-3 polyunsaturated fatty acids (PUFAs) displayed significant anti-hyperglycemic activity, the insulinotropic effects of their metabolites remain unknown. In this study, we took advantage of a transgenic model, mfat-1, that overexpresses an ω-3 desaturase and can convert ω-6 PUFAs to ω-3 PUFAs. Eicosapentaenoic acid (EPA) was sharply elevated in the pancreatic tissues of mfat-1 transgenic mice compared with wild-type (WT) mice. In contrast to the WT mice, the mfat-1 transgenics did not develop overt diabetes and still maintained normal blood glucose levels and insulin secretion following streptozotocin-treatment. Furthermore, under the condition of pancreatic β-cell damage, co-incubation of the metabolites of EPA produced from the CYP 450 pathway with isolated islets promoted the overexpression of insulin as well as β-cell specific markers, pdx1 and Nkx6.1 in pancreatic α-cells. Addition of EPA metabolites to the cultured glucagon-positive α-cell lines, a series of pancreatic β-cell markers were also found significantly elevated. Combined together, these results demonstrated the effects of ω-3 PUFAs and their metabolites on the trans-differentiation from α-cells to β-cells and its potential usage in the intervention of T1DM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2023.115775DOI Listing

Publication Analysis

Top Keywords

eicosapentaenoic acid
8
ω-3 pufas
8
pancreatic β-cell
8
metabolites
5
pancreatic
5
acid metabolites
4
metabolites promotes
4
promotes trans-differentiation
4
trans-differentiation pancreatic
4
pancreatic cells
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!