Src-homology-2-domain-containing protein tyrosine phosphatase-2 (SHP2) is a signaling enzyme whose activity is governed by an equilibrium between autoinhibited and activated states. Regulation of SHP2 activity is critical for cellular homeostasis, and mutations that alter its autoregulatory equilibrium cause cancers and developmental disorders. Several methods for assessing the strength of autoinhibitory interactions in SHP2 mutants have been previously reported, but each has limitations. We show that differential scanning fluorimetry provides a rapid, quantitative measure of SHP2 autoinhibition that is independent of the intrinsic activity of the SHP2 mutant being analyzed, does not involve protein labeling, and does not require specialized instrumentation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530186 | PMC |
http://dx.doi.org/10.1016/j.ab.2023.115300 | DOI Listing |
KRAS mutations are frequent in various human cancers. The development of selective inhibitors targeting KRAS mutations has opened a new era for targeted therapy. However, intrinsic and acquired resistance to these inhibitors remains a major challenge.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Faculty of Science and Engineering, Department of Biology, Konan University, Kobe, Japan; Institute of Integrative Neurobiology, Konan University, Kobe, Japan. Electronic address:
Phosphate (Pi) homeostasis at the cellular level is crucial, requiring coordinated Pi uptake, storage, and export. However, the regulatory mechanisms, particularly those governing Pi export, remain elusive, despite their relevance to human diseases like primary familial brain calcification. While Xpr1, conserved across eukaryotes, is the only known Pi exporter, the existence of additional Pi exporting factors is evident; however, these factors have been poorly characterized.
View Article and Find Full Text PDFJ Biomol Struct Dyn
November 2024
Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China.
SHP2-E76K, a mutant encoded by the PTPN11 gene, was associated with various solid tumors, such as lung cancer, glioblastoma, and intellectual disability. SHP2-E76K has become potential drug targets, while there was no effective inhibitor against the mutant currently. At present, the crystal complex structure of SHP099 with SHP2-E76K has been reported in the RCSB PDB protein data bank, however, the dynamic structure of SHP099 binding to the active center of SHP2-E76K protein was still lacking.
View Article and Find Full Text PDFHepatology
July 2024
Department of Pathology, School of Medicine, La Jolla, California, USA.
Nat Commun
September 2024
Oncogene Biology Laboratory, Francis Crick Institute, London, UK.
Mutant selective drugs targeting the inactive, GDP-bound form of KRAS have been approved for use in lung cancer, but resistance develops rapidly. Here we use an inhibitor, (RMC-4998) that targets RAS in its active, GTP-bound form, to treat KRAS mutant lung cancer in various immune competent mouse models. RAS pathway reactivation after RMC-4998 treatment could be delayed using combined treatment with a SHP2 inhibitor, which not only impacts tumour cell RAS signalling but also remodels the tumour microenvironment to be less immunosuppressive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!