Objective: The original Monash gestational diabetes mellitus (GDM) risk prediction in early pregnancy model is internationally externally validated and clinically implemented. We temporally validate and update this model in a contemporary population with a universal screening context and revised diagnostic criteria and ethnicity categories, thereby improving model performance and generalizability.
Study Design And Setting: The updating dataset comprised of routinely collected health data for singleton pregnancies delivered in Melbourne, Australia from 2016 to 2018. Model predictors included age, body mass index, ethnicity, diabetes family history, GDM history, and poor obstetric outcome history. Model updating methods were recalibration-in-the-large (Model A), intercept and slope re-estimation (Model B), and coefficient revision using logistic regression (Model C1, original ethnicity categories; Model C2, revised ethnicity categories). Analysis included 10-fold cross-validation, assessment of performance measures (c-statistic, calibration-in-the-large, calibration slope, and expected-observed ratio), and a closed-loop testing procedure to compare models' log-likelihood and akaike information criterion scores.
Results: In 26,474 singleton pregnancies (4,756, 18% with GDM), the original model demonstrated reasonable temporal validation (c-statistic = 0.698) but suboptimal calibration (expected-observed ratio = 0.485). Updated model C2 was preferred, with a high c-statistic (0.732) and significantly better performance in closed testing.
Conclusion: We demonstrated updating methods to sustain predictive performance in a contemporary population, highlighting the value and versatility of prediction models for guiding risk-stratified GDM care.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jclinepi.2023.08.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!