Recovery of valuable metals from red mud: A comprehensive review.

Sci Total Environ

Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang 110819, PR China; School of Metallurgy, Northeastern University, Shenyang 110819, PR China; Key Laboratory for Recycling of Nonferrous Metal Resources (Shenyang), Shenyang 110819, PR China.

Published: December 2023

As a bulk solid waste with high alkalinity, red mud (RM) not only occupies a large amount of land and requires high maintenance costs, but also unavoidably generates serious hazards to the surrounding ecological environment. The comprehensive treatment of RM has become an enormous challenge for the green, low-carbon and high-quality development of the global alumina industry. To minimize the RM destruction to the ecology and the waste of secondary resources, the sustainable utilization of RM was widely investigated in the past decades, especially for the recovery of valuable metals. This paper systematically summarized the research status of recycling valuable metals (Al, Fe, Na, Ti, Sc, Ga, V and RE) from RM in recent years. The recycling technology mainly includes physical beneficiation, hydrometallurgy, pyrometallurgy and electrodialysis. The technical principles and characteristics as well as the current problems of various recovery processes from RM were comprehensively introduced, and the future development directions of sustainable utilization were also prospected. The advantages and disadvantages based on the different aspects of recovery efficiency, energy consumption and environmental impact were also discussed. The proposal of new technologies for the harmless, high-value and full utilization of RM is beneficial to the future research on the comprehensive utilization of bulk industrial solid wastes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.166686DOI Listing

Publication Analysis

Top Keywords

valuable metals
12
recovery valuable
8
red mud
8
sustainable utilization
8
recovery
4
metals red
4
mud comprehensive
4
comprehensive review
4
review bulk
4
bulk solid
4

Similar Publications

Lithium-tellurium (Li-Te) batteries are gaining attention as a promising next-generation energy storage system due to their superior electrical conductivity and high volumetric capacity compared to sulfur and selenium. Tellurium's unique properties, such as suitable redox potential, excellent conductivity, high volumetric capacity, and greatest stability, position it as a strong candidate for negative electrode materials. This study explores the potential of metal tellurides, specifically CuTe and FeTe monolayers, as effective tellurium host materials, leveraging their polar interactions with lithium polytellurides.

View Article and Find Full Text PDF

Regulating Lithium-Ion Transport in PEO-Based Solid-State Electrolytes through Microstructures of Clay Minerals.

ACS Appl Mater Interfaces

January 2025

Research Center of Resource Chemistry and Energy Materials, Key Laboratory of Clay Mineral of Gansu, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China.

Clay minerals show significant potential as fillers in polymer composite solid electrolytes (CSEs), whereas the influence of their microstructures on lithium-ion (Li) transport properties remains insufficiently understood. Herein, we design advanced poly(ethylene oxide) (PEO)-based CSEs incorporating clay minerals with diverse microstructures including 1D halloysite nanotubes, 2D Laponite (Lap) nanosheets, and 3D porous diatomite. These minerals form distinct Li transport pathways at the clay-PEO interfaces due to their varied structural configurations.

View Article and Find Full Text PDF

GFA-Net: Geometry-Focused Attention Network for Six Degrees of Freedom Object Pose Estimation.

Sensors (Basel)

December 2024

Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, Chongqing University, Chongqing 400044, China.

Six degrees of freedom (6-DoF) object pose estimation is essential for robotic grasping and autonomous driving. While estimating pose from a single RGB image is highly desirable for real-world applications, it presents significant challenges. Many approaches incorporate supplementary information, such as depth data, to derive valuable geometric characteristics.

View Article and Find Full Text PDF

Houtt. Transformed Hairy Root Cultures as an Effective Platform for Producing Phenolic Compounds with Strong Bactericidal Properties.

Int J Mol Sci

January 2025

Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland.

Houtt. is the source of various phenolic compounds: phenolic acids, flawan-3-ols, and stilbenes, with a broad range of biological activity. The rhizome (underground organ of these plants) is abundant in secondary metabolites but, in natural conditions, may accumulate various toxic substances (such as heavy metals) from the soil.

View Article and Find Full Text PDF

Effect of Surface Finishing and Nitriding on the Wetting Properties of Hot Forging Tools.

Materials (Basel)

January 2025

Faculty of Mechanical Engineering, Institute of Mechanical Technology, Poznan University of Technology, Piotrowo 3, 60-695 Poznan, Poland.

Lubrication is a critical aspect of the metal forming process and it is strongly influenced by the surface texture of the tool-forming surfaces. This study is focused on determining the effect of surface finish and heat treatment on wettability involving commonly used lubrication agents. Three different finishing states are evaluated (as-ground, as-polished and as-nitrided).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!