In grassland soils, soil water repellency (SWR) may be one of the triggers of soil erosion and degradation as it can reduce water infiltration and penetration into the soil. Few studies were focusing on the evaluation of soil hydro-physical properties, such as hydrophobicity, and their relation to soil moisture, hydrophobic matter, and particle size in grassland soils. In this study, 800 soil samples were collected from the Xilingol grassland in Inner Mongolia, China, using the water droplet penetration time (WDPT) test to evaluate water repellency and we aimed to investigate the temporal and spatial distribution of SWR in grassland soils using the Kriging and Inverse Distance Weighting (IDW) interpolation methods and determine the physical-chemical properties that trigger the SWR. The results showed that the grassland soils in the studied area were slightly water-repellent and a few portions of the area exhibited strong water-repellency. In April, areas of soils with a depth of 0-5 cm and slight to strong SWR accounted for 80 % of the total studied area, of which 5 % had strong water repellency. Moreover, in August, 90 % of the studied area consisted of soils with slight to strong SWR, of which 60 % accounted for soils with strong SWR. With a soil water content of 10.95 %, the SWR reached its peak, with an average value of 60.32 s. The SWR was positively correlated with total N, available N, and soil organic matter (SOM) contents, and therein the hydrophobic acid matter and the hydrophobic basic matter content had a positive contribution to SWR, and the hydrophilic basic matter and the hydrophilic acidic matter had a negative contribution on SWR. In addition, SWR was found to be negatively related to the soil particle size (r = -0.672). A slight SWR was also observed in the majority of the studied area, particularly in the topsoil and fine soils, especially during the monsoon period; hence, SWR must be also considered to reduce the risk of occurrence of soil erosion and degradation in grasslands.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.166700DOI Listing

Publication Analysis

Top Keywords

grassland soils
20
water repellency
16
studied area
16
swr
13
soil
12
soil water
12
particle size
12
strong swr
12
soils
9
temporal spatial
8

Similar Publications

Mowing is a primary practice in temperate meadows, which are severely degraded due to frequent mowing, overgrazing, and other factors, necessitating restoration and sustainable management. The natural recovery of these grasslands hinges on their germinable soil seed banks, which form the basis for future productivity. Thus, germinable soil seed banks are critical for restoring overexploited meadows.

View Article and Find Full Text PDF

Heating up the roof of the world: tracing the impacts of warming on carbon cycle in alpine grasslands on the Tibetan Plateau.

Natl Sci Rev

February 2025

State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.

Climate warming may induce substantial changes in the ecosystem carbon cycle, particularly for those climate-sensitive regions, such as alpine grasslands on the Tibetan Plateau. By synthesizing findings from warming experiments, this review elucidates the mechanisms underlying the impacts of experimental warming on carbon cycle dynamics within these ecosystems. Generally, alterations in vegetation structure and prolonged growing season favor strategies for enhanced ecosystem carbon sequestration under warming conditions.

View Article and Find Full Text PDF

Forage crop rotations including grasslands, common in dairy systems, are known to ensure good productivity and limit the decrease of soil organic matter frequently observed in permanent arable land. A dataset was built to compile data from the Kerbernez long-term experiment, conducted in Brittany(France) from 1978 to 2005. This experiment compared the effect of different forage crop rotations fertilized with ammonium nitrate and/or slurry, with or without grassland, on forage production (quantity, quality) and changes in soil physio-chemical characteristics.

View Article and Find Full Text PDF

Nitrogen (N) retention is a critical ecosystem function associated with sustainable N supply. Lack of experimental evidence limits our understanding of how grassland N retention can vary with soil acidification. A N-labeling experiment was conducted for 2 years to quantify N retention by soil pathways and plant functional groups across a soil-acidification gradient in a meadow.

View Article and Find Full Text PDF

The heterogeneity of Pinus yunnanensis plantation growth was driven by soil microbial characteristics in different slope aspects.

BMC Plant Biol

January 2025

State Key Laboratory of Tree Genetics and Breeding, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, 650233, PR China.

The slope aspect is an important environmental factor, which can indirectly change the acceptable solar radiation of forests. However, the mechanism of how this aspect changes the underground ecosystem and thus affects the growth of aboveground trees is not clear. In this study, Pinus yunnanensis plantation was taken as the research object, and the effects of soil and microbial characteristics on tree growth under different slope aspects and soil depths were systematically analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!