Antibiotics and microplastics (MPs) coexisting as unique environmental contaminants may cause unintended environmental issues. In this study, the adsorption-desorption behaviors of sulfamethoxazole (SMX) on both original and UV-aged MPs were examined. Polyhydroxyalkanoates (PHA) and polyethylene (PE), which represent degradable and refractory MPs, respectively, were chosen as two distinct types of MPs. Furthermore, simulated fish intestinal fluids (SFIF) and simulated mammalian stomach fluids (SMGF) were employed to evaluate the desorption behaviors of SMX from aged MPs. Our findings demonstrate that UV-aging altered the polarity, hydrophilicity, and structure of the MPs. Aged MPs showed a higher adsorption capacity than the original MPs and they have a higher desorption capacity than original MPs in simulated body fluids. PE has a higher SMX desorption capacity in SFIF and the opposite happened in SMGF. Our results highlight the importance of considering the different adsorption-desorption behaviors of antibiotics on MPs when evaluating their environmental impact.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2023.115473DOI Listing

Publication Analysis

Top Keywords

adsorption-desorption behaviors
12
mps
10
behaviors sulfamethoxazole
8
mps simulated
8
aged mps
8
mps higher
8
capacity original
8
original mps
8
desorption capacity
8
microplastic aging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!