Due to the excessive contamination of heavy metals pollution, it is very urgent and necessary to develop a real-time detection method for the heavy metals in food. As a target sensing device, a paper-based microfluidic device (μPAD) has the advantages of simplicity, low-cost, and portability. In this study, a self-driven microfluidic paper-based chip was first developed for the simultaneous detection of four targets. The channels on the microfluidic chip were prepared by using wax printing and automatic screen printing on the filter paper, where liquid flowed by capillary force without pump assistance. Based on the specific binding ability of aptamers to heavy metals, a "turn-on" fluorescence aptasensor for the simultaneous detection of four heavy metal ions was developed on the proposed multi-channel device via smartphone imaging. The obtained fluorescence images were digitized into RGB color values by Image J software, and an M-mode was established to realize the quantitative detection of heavy metal ions. Under optimal conditions, the limits of detection for lead(II), mercury(II), cadmium(II), and arsenic(III) were 4.20 nM, 1.70 nM, 2.04 nM, and 1.65 nM, respectively. Furthermore, the aptasensor was successfully applied to the quantitative detection of four heavy metal ions in apple and lettuce samples with recovery rates of 84.0%-104.1%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2023.125112DOI Listing

Publication Analysis

Top Keywords

detection heavy
16
heavy metals
16
simultaneous detection
12
heavy metal
12
metal ions
12
paper-based microfluidic
8
microfluidic chip
8
smartphone imaging
8
quantitative detection
8
detection
7

Similar Publications

Background: The early detection of Hepatocellular Carcinoma (HCC) is crucial for improving patient survival rates.Early diagnosis of HCC can significantly enhance treatment outcomes and reduce disease progression. Antigen detection of tumor markers is one of the important diagnostic methods for HCC.

View Article and Find Full Text PDF

Dual-stage excitation source improves the analytical sensitivity of miniaturized optical emission spectrometer.

Talanta

January 2025

Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, 110122, China. Electronic address:

Miniaturized optical emission spectrometric (OES) devices based on various microplasma excitation sources provide a reliable tool for in-situ elemental analysis. The key to improving analytical performance is enhancing the excitation capability of the microplasma source in these devices. Here, dielectric barrier discharge (DBD) and point discharge (PD) technologies are combined to construct an enhanced dual-stage excitation source (called DBD-PD), which improves the overall excitation efficiency and OES signal sensitivity.

View Article and Find Full Text PDF

Occurrences of heavy metal in breast milk in China: Results of the third national breast milk survey.

J Hazard Mater

January 2025

Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China. Electronic address:

To investigate the exposure of infants to heavy metal during lactation, breast milk from 24 provinces in China were detected. Among As, Cd, Cr, Hg, and Pb, the detection frequencies of As (85 %, 0.50 μg/L) and Cd (91 %, 0.

View Article and Find Full Text PDF

A dual-mode detection platform utilizing colorimetric and Raman was developed based on the exponential amplification reaction (EXPAR) strategy and a "core-satellite" structure constructed by bimetallic nanozymes to detect chloramphenicol (CAP). Initially, DNA-gated metal-organic frameworks (MOFs) incorporating cascaded amplification were used to be nanocarriers for the colorimetric and Raman reporter molecules (3,3',5,5'-tetramethylbiphenyl; TMB). Subsequently, assembled DNA served as gatekeepers to create a stimulus-responsive DNA-gated MOF (TMB@DNA/MOF).

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.

Background: Heavy alcohol consumption is associated with increased risk for Alzheimer's disease and related dementias (ADRD), with mixed evidence suggesting a dose-dependent nonlinear effect of alcohol on ADRD. Potential mechanisms by which alcohol may promote or attenuate brain pathology need further exploration. Although chronic alcohol consumption associates with gut microbiome alterations, it remains unclear whether microbial alterations mediate alcohol-associated neurodegeneration and cognitive decline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!