Deciphering the functional landscape of phosphosites with deep neural network.

Cell Rep

Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China; School of Pharmacy, Fujian Medical University, Fuzhou 350122, China. Electronic address:

Published: September 2023

Current biochemical approaches have only identified the most well-characterized kinases for a tiny fraction of the phosphoproteome, and the functional assignments of phosphosites are almost negligible. Herein, we analyze the substrate preference catalyzed by a specific kinase and present a novel integrated deep neural network model named FuncPhos-SEQ for functional assignment of human proteome-level phosphosites. FuncPhos-SEQ incorporates phosphosite motif information from a protein sequence using multiple convolutional neural network (CNN) channels and network features from protein-protein interactions (PPIs) using network embedding and deep neural network (DNN) channels. These concatenated features are jointly fed into a heterogeneous feature network to prioritize functional phosphosites. Combined with a series of in vitro and cellular biochemical assays, we confirm that NADK-S48/50 phosphorylation could activate its enzymatic activity. In addition, ERK1/2 are discovered as the primary kinases responsible for NADK-S48/50 phosphorylation. Moreover, FuncPhos-SEQ is developed as an online server.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2023.113048DOI Listing

Publication Analysis

Top Keywords

neural network
16
deep neural
12
nadk-s48/50 phosphorylation
8
network
7
deciphering functional
4
functional landscape
4
phosphosites
4
landscape phosphosites
4
phosphosites deep
4
neural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!