Arsenic is a toxic metal-like element. The toxic reaction of the body to arsenic is related to the ability of arsenic methylation metabolism. As the rate-limiting enzyme of arsenic methylation metabolism, the genetic single nucleotide polymorphisms (SNPs) of arsenic (+ 3 oxidation state) methyltransferase (AS3MT) gene are related to capacity of arsenic methylation. In this paper, we investigated the association of five SNPs (rs7085104, rs3740390, 3740393, rs10748835, and rs1046778) in AS3MT with arsenic methylation metabolizing using the data and samples from a cross-sectional case-control study of arsenic and Type 2 diabetes mellitus conducted in Shanxi, China. A total of 340 individuals were included in the study. Urinary total arsenic (tAs, μg/L) was detected by liquid chromatography-atomic fluorescence spectrometry (LC-AFS). According to "safety guidance value of urinary arsenic for population" as specified in WS/T665-2019 (China), participants were divided into the control group (tAs ≤ 32 μg/L, n = 172) and arsenic-exposed group (tAs > 32 μg/L, n = 168). iAs%, MMA%, and DMA% are as the indicator of arsenic methylation capacity. The genotypes of AS3MT SNPs were examined by Multiple PCR combined sequencing. Linear regression analysis showed that AG + GG genotype in rs7085104 was associated with decreased iAs% and increased DMA%. Moreover, AG + AA genotype in rs10748835 and TC + CC genotype in rs1046778 were associated with decreased iAs% and MMA% and increased DMA%. The interaction between rs7085104 and arsenic is associated with iAs% and DMA%. The interaction of rs3740390 and rs10748835 with arsenic is associated with iAs%. Haplotype CTAC (rs3740393-rs3740390-rs10748835-rs1046778) was associated with lower iAs% and higher DMA%, but this association disappeared after adjusting for age, gender, drink, smoking, BMI and tAs. Haplotype GCAC was associated with decreased MMA%. Our study provides additional support for revealing the factors influencing the metabolic capacity of arsenic methylation and might be helpful to identify the population susceptible to arsenic exposure through individualized screening in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00204-023-03590-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!