Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There are currently no surgical procedures that effectively address the treatment of volumetric muscle loss (VML) injuries that has motivated the development of implantable scaffolding. In this study, the effectiveness of an allogenic scaffold fabricated using fibers built from the extracellular matrix (ECM) collected from muscle fibroblast cells during growth in culture was explored using a hindlimb VML injury (tibialis anterior muscle) in a rat model. Recovery outcomes (8 weeks) were explored in comparison with unrepaired controls as well previously examined allogenic scaffolds prepared from decellularized skeletal muscle (DSM) tissue ( = 9/sample group). At 8-week follow-up, we found that the repair of VML injuries using ECM fiber scaffolds in combination with an autogenic mince muscle (MM) paste significantly improved the recovery of peak contractile torque (79% ± 13% of uninjured contralateral muscle) when compared with unrepaired VML controls (57% ± 13%). Similar significant improvements were measured for muscle mass restoration (93% ± 10%) in response to ECM fiber+MM repair when compared with unrepaired VML controls (73% ± 13%). Of note, mass and contractile strength recovery outcomes for ECM fiber scaffolds were not significantly different from DSM+MM repair controls. These findings support the further exploration of cell-derived ECM fiber scaffolds as a promising strategy for the repair of VML injury with recovery outcomes that compare favorably with current tissue-sourced ECM scaffolds. Furthermore, although the therapeutic potential of ECM fibers as a treatment strategy for muscle injury was explored in this study, they could be adapted for high-throughput fabrication methods developed and routinely used by the textile industry to create a broad range of woven implants (e.g., hernia meshes) for even greater clinical impact.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.TEA.2022.0227 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!