A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel hybrid CNN and BiGRU-Attention based deep learning model for protein function prediction. | LitMetric

Proteins are the building blocks of all living things. Protein function must be ascertained if the molecular mechanism of life is to be understood. While CNN is good at capturing short-term relationships, GRU and LSTM can capture long-term dependencies. A hybrid approach that combines the complementary benefits of these deep-learning models motivates our work. Protein Language models, which use attention networks to gather meaningful data and build representations for proteins, have seen tremendous success in recent years processing the protein sequences. In this paper, we propose a hybrid CNN + BiGRU - Attention based model with protein language model embedding that effectively combines the output of CNN with the output of BiGRU-Attention for predicting protein functions. We evaluated the performance of our proposed hybrid model on human and yeast datasets. The proposed hybrid model improves the Fmax value over the state-of-the-art model SDN2GO for the cellular component prediction task by 1.9 %, for the molecular function prediction task by 3.8 % and for the biological process prediction task by 0.6 % for human dataset and for yeast dataset the cellular component prediction task by 2.4 %, for the molecular function prediction task by 5.2 % and for the biological process prediction task by 1.2 %.

Download full-text PDF

Source
http://dx.doi.org/10.1515/sagmb-2022-0057DOI Listing

Publication Analysis

Top Keywords

prediction task
24
function prediction
12
hybrid cnn
8
model protein
8
protein function
8
protein language
8
proposed hybrid
8
hybrid model
8
cellular component
8
component prediction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!