Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The cellular and molecular dynamics of human prepuce are crucial for understanding its biological and physiological functions, as well as the prevention of related genital diseases. However, the cellular compositions and heterogeneity of human prepuce at single-cell resolution are still largely unknown. Here we systematically dissected the prepuce of children and adults based on the single-cell RNA-seq data of 90,770 qualified cells.
Results: We identified 15 prepuce cell subtypes, including fibroblast, smooth muscle cells, T/natural killer cells, macrophages, vascular endothelial cells, and dendritic cells. The proportions of these cell types varied among different individuals as well as between children and adults. Moreover, we detected cell-type-specific gene regulatory networks (GRNs), which could contribute to the unique functions of related cell types. The GRNs were also highly dynamic between the prepuce cells of children and adults. Our cell-cell communication network analysis among different cell types revealed a set of child-specific (e.g., CD96, EPO, IFN-1, and WNT signaling pathways) and adult-specific (e.g., BMP10, NEGR, ncWNT, and NPR1 signaling pathways) signaling pathways. The variations of GRNs and cellular communications could be closely associated with prepuce development in children and prepuce maintenance in adults.
Conclusions: Collectively, we systematically analyzed the cellular variations and molecular changes of the human prepuce at single-cell resolution. Our results gained insights into the heterogeneity of prepuce cells and shed light on the underlying molecular mechanisms of prepuce development and maintenance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474653 | PMC |
http://dx.doi.org/10.1186/s12864-023-09615-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!