Electrolytes have a wide range of technological applications. Despite the recent improvements in characterizing and predicting the phase behavior of microemulsion systems by hydrophilic-lipophilic deviation (HLD) and net-average curvature (NAC) frameworks, they are ineffective in the presence of different salts. This work seeks to bridge this gap by investigating the influence of salt nature on the microemulsion phase formulation. First, a one-dimensional salinity scan on different microemulsion systems consisting of sodium dodecyl benzene sulfonate as a surfactant, hexane as an oil and, several brines was carried out, and the effect of each salt on the phase behavior were precisely evaluated. The results for optimum salinity and solubilization parameter of different salts were consistent with the Hofmeister series. In addition, multiple linear regression model is presented to accurately predicting the optimum salinity of different salts using this research data and all the available experimental data. The results revealed that the values estimated by this model is in significant consistency with the experimental data by correlation coefficient of 0.92. Finally, the effect of salt type on the NAC parameters (length parameter, and characteristic length[Formula: see text] were evaluated to improve the predicting ability of this equation of state in the presence of various salts. We found that salt nature has a significant impact on both these parameters. It was found that the length parameter is linearly dependent on the optimum ionic strength of salts while the salting-out capacity of each salt was predominant factor affecting the characteristic length.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474266 | PMC |
http://dx.doi.org/10.1038/s41598-023-40761-x | DOI Listing |
Heliyon
January 2025
Institute of Metal Research (IMR), Chinese Academy of Science, Wenhua Road, Shenyang, China.
Recently, researchers have used silver nanoparticles (AgNPs) coupled with humic acid (HA) as antimicrobial agents. Herein, AgNPs were prepared and coupled with humic acid for their antimicrobial activities. The as-prepared AgNPs coupled with humic acid (HA) were characterized by an atomic force microscope (AFM), X-ray powder diffraction (XRD), zeta potential, zeta sizer, Fourier-transform infrared (FT-IR) spectroscopy, and UV-VIS spectrophotometer.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
Sodium-based rechargeable batteries are some of the most promising candidates for electric energy storage with abundant sodium reserves, particularly, sodium-based dual-ion batteries (SDIBs) perform advantages in high work voltage (≈5.0 V), high-power density, and potentially low cost. However, irreversible electrolyte decomposition and co-intercalation of solvent molecules at the electrode interface under a high charge state are blocking their development.
View Article and Find Full Text PDFNano Lett
January 2025
School of Nanoscience and Materials Engineering, Henan University, Zhengzhou, Henan 450046, China.
Spray cooling, which dissipates heat through droplet evaporation, is an efficient cooling method. Using seawater instead of freshwater in spraying is appealing given the intensifying global water crisis. However, seawater-based cooling suffers from salt accumulation on hot surfaces.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Languages and Cultures, Ghent University, Blandijnberg 2, 9000, Ghent, Belgium.
Cuneiform tablets were a primary writing medium in the ancient Near East from the late fourth millennium BCE to the first century CE. Although these clay tablets were durable for daily use, prolonged burial over millennia has made them vulnerable to salt damage. Fluctuations in temperature and humidity cause the migration of salts to the surface of the tablets, damaging them and covering the inscriptions, making the text unreadable.
View Article and Find Full Text PDFJ Plant Physiol
January 2025
School of Life Sciences, Qinghai Normal University, Xining, 810008, China.
Rheum tanguticum, an endemic species from the Qinghai-Xizang Plateau, is a significant perennial and medicinal plant recognized for its robust resistance to abiotic stresses, including drought, cold, and salinity. To advance the understanding of stress-response mechanisms in R. tanguticum, this study aimed to establish a reliable set of housekeeping genes as references for normalizing RT-qPCR gene expression analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!