Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
With the SARS-CoV-2 pandemic and the need for affordable and rapid mass testing, colorimetric isothermal amplification reactions such as Loop-Mediated Isothermal Amplification (LAMP) are quickly rising in importance. The technique generates data that is similar to quantitative Polymerase Chain Reaction (qPCR), but instead of an endpoint color visualization, it is possible to construct a signal over a time curve. As the number of works using time-course analysis of isothermal reactions increases, there is a need to analyze data and standardize their related treatments quantitatively. Here, we take a step forward toward this goal by evaluating different available data treatments (curve models) for amplification curves, which allows for a cycle threshold-like parameter extraction. In this study, we uncover evidence of a double sigmoid equation as the most adequate model to describe amplification data from our remote diagnostics system and discuss possibilities for similar setups. We also demonstrate the use of multimodal Gompertz regression models. Thus, this work provides advances toward standardized and unbiased data reporting of Reverse Transcription (RT) LAMP reactions, which may facilitate and quicken assay interpretation, potentially enabling the application of machine learning techniques for further optimization and classification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474118 | PMC |
http://dx.doi.org/10.1038/s41598-023-40737-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!