Chemotherapy represents a major type of clinical treatment against colorectal cancer (CRC). Aberrant drug efflux mediated by transporters acts as a key approach for tumor cells to acquire chemotherapy resistance. Increasing evidence implies that tumor-associated macrophages (TAMs) play a pivotal role in both tumorigenesis and drug resistance. Nevertheless, the specific mechanism through which TAMs regulate drug efflux remains elusive. Here, we discovered that TAMs endow CRC cells with resistance to 5-fluorouracil (5-FU) treatment via a cell-cell interaction-mediated MRP1-dependent drug efflux process. Mechanistically, TAM-secreted C-C motif chemokine ligand 17 (CCL17) and CCL22, via membrane receptor CCR4, activated the PI3K/AKT pathway in CRC tumor cells. Specifically, phosphorylation of AKT inactivated IP3R and induced calcium aggregation in the ER, resulting in the activation of ATF6 and upregulation of GRP78. Accordingly, excessive GRP78 can interact with MRP1 and promote its translocation to the cell membrane, causing TAM-induced 5-FU efflux. Taken together, our results demonstrated that TAMs promote CRC chemotherapy resistance via elevating the expression of GRP78 to promote the membrane translocation of MRP1 and drug efflux, providing direct proof for TAM-induced drug resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474093PMC
http://dx.doi.org/10.1038/s41419-023-06108-0DOI Listing

Publication Analysis

Top Keywords

drug efflux
16
tumor-associated macrophages
8
colorectal cancer
8
membrane translocation
8
tumor cells
8
chemotherapy resistance
8
drug resistance
8
resistance
6
drug
6
efflux
5

Similar Publications

The increasing antibiotic resistance in Pseudomonas aeruginosa, responsible for both community-acquired and hospital-acquired infections, is of global significance. The primary mechanisms contributing to resistance development in P.aeruginosa include the increased activity of efflux pumps, decreased permeability of outer membrane porins and the production of carbapenemases.

View Article and Find Full Text PDF

Carbapenemase producing (CPEs) represent a group of multidrug resistant pathogens for which few, if any, therapeutics options remain available. CPEs generally harbor plasmids that encode resistance to last resort carbapenems and many other antibiotics. We previously performed a high throughput screen to identify compounds that can disrupt the maintenance and replication of resistance conferring plasmids through use of a synthetic screening plasmid introduced into K-12 cells.

View Article and Find Full Text PDF

Background: Cinnamomum cassia Presl (Lauraceae) is widely used as a medicinal plant in the folk medicine and pharmaceutic industry, for its promising anti-inflammatory, anti-oxidative, and anti-bacterial function. However, the major bioactive components were still in debate, and their underlying molecular mechanism was not yet fully understood.

Purpose: This study aimed to identify the bioactive ingredients of C.

View Article and Find Full Text PDF

Bacterial resistance is a major public health challenge. In Gram-negative bacteria, the synergy between multidrug efflux pumps and outer membrane impermeability determines the intracellular concentration of antibiotics. Consequently, it also dictates antibiotic activity on their respective targets.

View Article and Find Full Text PDF

Solid lipid nanoparticles for increased oral bioavailability of acalabrutinib in chronic lymphocytic leukaemia.

Discov Nano

December 2024

Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana, 500078, India.

Acalabrutinib (ACP) is a first-line treatment for chronic lymphocytic leukemia but suffers from poor and variable oral bioavailability due to its pH-dependent solubility, CYP3A4 metabolism, and P-gp efflux. Thus, the objective of this study was to improve the solubility and dissolution behaviour, in turn enhancing bioavailability, by formulating solid lipid nanoparticles (SLNs). ACP loaded SLNs (ACP-SLNs) were prepared via solvent-free hot emulsification followed by a double sonication process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!