Immobilization of purified enzyme EreB in metalorganic framework (MOF) mesopores for erythromycin degradation.

Environ Res

Institute of Urban and Rural Mining, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou, 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou, 213164, China. Electronic address:

Published: November 2023

Erythromycin, a commonly used macrolide antibiotic, plays a crucial role in both human medicine and animal husbandry. However, its abuse has led to residual presence in the environment, with problems such as the emergence of resistant bacteria and enrichment of resistance genes. These issues pose significant risks to human health. Thus far, there are no effective, environmentally friendly methods to manage this problem. Enzymes can specifically degrade erythromycin without causing other problems, but their unrecyclability and environmental vulnerability hinder large-scale application. Enzyme immobilization may help to solve these problems. This study used Cu-BTC, a synthetic metal-organic framework, to immobilize the erythromycin-degrading enzyme EreB. The loading temperature and enzyme quantity were optimized. The Cu-BTC and EreB@Cu-BTC were characterized by various methods to confirm the preparation of Cu-BTC and immobilization of EreB. The maximum enzyme loading capacity was 66.5 mg g. In terms of enzymatic properties, immobilized EreB had improved heat (25-45 °C) and alkaline (6.5-10) tolerance, along with greater affinity between the enzyme and its substrate; K decreased from 438.49 to 372.30 mM. Recycling was also achieved; after 10 cycles, 57.12% of the enzyme activity was maintained. After composite degradation, the antibacterial activity of erythromycin-containing wastewater was examined; the results showed that the novel composite could completely inactivate erythromycin. In summary, Cu-BTC was an ideal carrier for immobilization of the enzyme EreB, and the EreB@Cu-BTC composite has good prospects for the treatment of erythromycin-containing wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.117023DOI Listing

Publication Analysis

Top Keywords

enzyme ereb
12
enzyme
8
erythromycin-containing wastewater
8
ereb
5
immobilization
4
immobilization purified
4
purified enzyme
4
ereb metalorganic
4
metalorganic framework
4
framework mof
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!