Meibomian gland dysfunction is one of the most common ocular diseases, with therapeutic treatment being primarily palliative due to our incomplete understanding of meibomian gland (MG) pathophysiology. To progress in vitro studies of human MG, this study describes a comprehensive protocol, with detailed troubleshooting, for the successful isolation, cultivation and cryopreservation of primary MG cells using biopsy-size segments of human eyelid tissue that would otherwise be discarded during surgery. MG acini were isolated and used to establish and propagate lipid-producing primary human MG cells. The primary cell viability during culture procedure was maintained through the application of Rho-associated coiled-coil containing protein kinase inhibitor (Y-27632, 10 μM) and collagen I from rat tails. Transcriptomic analysis of differentiated primary human MG cells confirmed cell origin and revealed high-level expression of many lipogenesis-related genes such as stearoyl-CoA desaturase (SCD), ELOVL Fatty Acid Elongase 1 (ELOVL1) and fatty acid synthase (FASN). Primary tarsal plate fibroblasts were also successfully isolated, cultured and cryopreserved. Established primary human MG cells and tarsal plate fibroblasts presented in this study have potential for applications in 3D models and bioengineered tissue that facilitate research in understanding of MG biology and pathophysiology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2023.109636DOI Listing

Publication Analysis

Top Keywords

primary human
16
meibomian gland
12
human cells
12
eyelid tissue
8
fatty acid
8
tarsal plate
8
plate fibroblasts
8
human
6
primary
6
cells
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!