Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A virtual anatomical model of a patient can be a valuable tool for enhancing clinical tasks such as workflow automation, patient-specific X-ray dose optimization, markerless tracking, positioning, and navigation assistance in image-guided interventions. For these tasks, it is highly desirable that the patient's surface and internal organs are of high quality for any pose and shape estimate. At present, the majority of statistical shape models (SSMs) are restricted to a small number of organs or bones or do not adequately represent the general population. To address this, we propose a deformable human shape and pose model that combines skin, internal organs, and bones, learned from CT images. By modeling the statistical variations in a pose-normalized space using probabilistic PCA while also preserving joint kinematics, our approach offers a holistic representation of the body that can be beneficial for automation in various medical applications. In an interventional setup, our model could, for example, facilitate automatic system/patient positioning, organ-specific iso-centering, automated collimation or collision prediction. We assessed our model's performance on a registered dataset, utilizing the unified shape space, and noted an average error of 3.6 mm for bones and 8.8 mm for organs. By utilizing solely skin surface data or patient metadata like height and weight, we find that the overall combined error for bone-organ measurement is 8.68 mm and 8.11 mm, respectively. To further verify our findings, we conducted additional tests on publicly available datasets with multi-part segmentations, which confirmed the effectiveness of our model. In the diverse TotalSegmentator dataset, the errors for bones and organs are observed to be 5.10mm and 8.72mm, respectively. Our work shows that anatomically parameterized statistical shape models can be created accurately and in a computationally efficient manner. The proposed approach enables the construction of shape models that can be directly integrated into to various medical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2023.107383 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!