Understanding the occurrence modes of mercury in coal is important as its release poses long-term adverse effects on the environment and human health during coal production and utilization. However, the matter still remains a subject of controversy due to differing results from direct and indirect analyses, which suggest various possible modes of occurrence for mercury in coal. Additionally, the experimental measurement of Hg concentration presents challenges, further contributing to the complexity of the issue. A comprehensive investigation of experiments and molecular simulations is conducted herein. Electron probe microanalysis and elemental mapping analysis show that elemental Hg is concentrated in framboidal pyrites while absent in organic matter. To understand the occurrence modes of mercury in inorganic and organic materials at the atomic level, molecular simulations are performed for Hg adsorption and retention in MMT, pyrite, and kerogen slit nanopores. It is found that the inorganic MMT and pyrite surfaces have a greater adsorption capacity than the organic kerogen surface (pyrite > MMT > kerogen). The outer-sphere adsorption is mainly observed with at least one monolayer of water molecules exiting between the ion and mineral surfaces. MMT has the highest retention for Hg transport as the self-diffusion coefficient is the smallest among the three slit pores (MMT < pyrite < kerogen). The high adsorption and retention originate from the strong Hg-mineral interaction. These results suggest that mercury in coal is most likely associated with inorganic minerals instead of organic matter.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.132429DOI Listing

Publication Analysis

Top Keywords

mercury coal
12
mmt pyrite
12
occurrence modes
8
modes mercury
8
molecular simulations
8
organic matter
8
adsorption retention
8
pyrite kerogen
8
mercury
5
coal
5

Similar Publications

A HPU-23@Ru@Tb-NH sensor array with light-driven oxidase-mimicking activity and triple-emission fluorescence was developed. It was composed of a Tb-functionalized metal organic framework and Ru(bpy) and applied to the simultaneous detection of Hg, ClO, and PO via differently responsive channels. HPU-23@Ru@Tb-NH had a photoresponsive colorimetric response toward Hg with a LOD as low as 4.

View Article and Find Full Text PDF

Uptake of metals, metalloids, and radiocesium varies with habitat use among passerine communities at coal combustion and nuclear fission legacy waste sites.

Environ Pollut

December 2024

Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken, SC, 29802, USA; Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green St, Athens, GA, 30602, USA.

Releases of coal combustion and nuclear fission wastes create contaminated landscapes that pose long-term management challenges. Efforts to facilitate the natural attenuation of legacy wastes in the environment can provide attractive habitat for passerine birds. Passerines have diverse foraging and nesting behaviors that lead to heterogenous contaminant exposure, yet few studies investigate contaminant uptake in passerines on a community scale.

View Article and Find Full Text PDF

Mercury (Hg) is a global pollutant of widespread concern, and modern Hg levels have been much elevated compared to pre-industrial levels. The majority of environmental Hg assessment has occurred in the developed world within the temperate region, but recent years we have witnessed increases in research activities in polar, subtropical, and tropical biomes. East Asia is currently the biggest emitter of anthropogenic Hg, while intense research is ongoing in China, Korea, and Japan, relatively little has been done in the neighboring regions.

View Article and Find Full Text PDF

Global ecosystems face mercury contamination, yet long-term data are scarce, hindering understanding of ecosystem responses to atmospheric Hg input changes. To bridge the data gap and assess ecosystem responses, we compiled and compared a mercury accumulation database from peat, lake, ice and marine deposits worldwide with atmospheric mercury deposition modelled by GEOS-Chem, focusing on trends, magnitudes, spatial-temporal distributions and impact factors. The mercury fluxes in all four deposits showed a 5- to 9-fold increase over 1700-2012, with lake and peat mercury fluxes that generally mirrored atmospheric deposition trends.

View Article and Find Full Text PDF

Research progress and application of carbon sequestration in industrial flue gas by microalgae: A review.

J Environ Sci (China)

June 2025

CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China. Electronic address:

Global warming caused by the emission of CO in industrial flue gas has attracted more and more attention. Therefore, to fix CO with high efficiency and environmentally friendly had become the hot research field. Compared with the traditional coal-fired power plant flue gas emission reduction technology, carbon fixation and emission reduction by microalgae is considered as a promising technology due to the advantages of simple process equipment, convenient operation and environmental protection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!