Current energy, water, and land (EWL) nexus research treats all resources equally, causing bias in complicated nexus studies. To make the analysis robust, we consider resource endowment and significance. Here, we provide a methodological framework where the urban industrial resource nexus strength is constructed and assign weights to resources according to policies, describing resource efficiency and representing it in ternary diagrams to assess the urban industrial nexus innovatively. Results showed that energy drives urban development under all weights, with energy resource efficiency exceeding 60%. From consumption-based accounting, energy continues to dominate most industries under physical weightings but emphasizes the significance of water and land. While, under economic weightings, land supplants energy's dominance in specific sectors. Setting weights helps understand resource interaction, establish synergy based on urban development objectives, and minimize robustness. Our findings provide quantitative evidence for assessing urban resource efficiency to highlight priority sectors for intervention in urban decision-making.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.118849 | DOI Listing |
Front Vet Sci
December 2024
College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.
Excessive inorganic trace elements are added to livestock and poultry feed to meet the needs of animals, accompanied by frequent occurrence of excretion and gastrointestinal stress. Replacing inorganic trace elements with organic trace elements provides a promising solution to alleviate these problems. Therefore, this study aimed to assess the impact of replacing all inorganic trace elements (ITMs) in feed on the growth performance, meat quality, serum parameters, trace element metabolism, and gut microbiota of finishing pigs.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Laboratory of Advanced Studies in Vertical Agriculture, Goiano Federal Institute of Education, Science and Technology, Rio Verde, Brazil.
Vertical Farming Systems (VFS) emerge as an approach to optimize plant growth in urban and controlled environments, by enabling sustainable and intensive production in reduced spaces. VFS allow for greater control over growing conditions, such as light, temperature and humidity, resulting in higher quality crops and with less use of resources, such as water and fertilizers. This research investigates the effects of different lighting regimes (Constant and Gaussian) and spectral qualities (white, RBW, blue and red) on the growth, photosynthesis, and biomass accumulation of lentil microgreens () in VFS.
View Article and Find Full Text PDFThe advent of spatial transcriptomics and spatial proteomics have enabled profound insights into tissue organization to provide systems-level understanding of diseases. Both technologies currently remain largely independent, and emerging same slide spatial multi-omics approaches are generally limited in plex, spatial resolution, and analytical approaches. We introduce IN-situ DEtailed Phenotyping To High-resolution transcriptomics (IN-DEPTH), a streamlined and resource-effective approach compatible with various spatial platforms.
View Article and Find Full Text PDFMicrobial research generates vast and complex data from diverse omics technologies, necessitating innovative analytical solutions. microGalaxy (Galaxy for Microbiology) addresses these needs with a user-friendly platform that integrates 220+ tool suites and 65+ curated workflows for microbial analyses, including taxonomic profiling, assembly, annotation, and functional analysis. Hosted on the main EU Galaxy server (microgalaxy.
View Article and Find Full Text PDFUnlabelled: Strain-level variation among host-associated bacteria often determines host range and the extent to which colonization is beneficial, benign, or pathogenic. is a beneficial symbiont of the light organs of fish and squid with known strain-specific differences that impact host specificity, colonization efficiency, and interbacterial competition. Here, we describe how the conserved global regulator, H-NS, has a strain-specific impact on a critical colonization behavior: biofilm formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!