Trapping in acoustic standing waves: Effect of liquid drop compressibility.

J Acoust Soc Am

Physics and Astronomy Department, Washington State University, Pullman, Western Australia, 99164-2814.

Published: September 2023

The Reflections series takes a look back on historical articles from The Journal of the Acoustical Society of America that have had a significant impact on the science and practice of acoustics.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0020809DOI Listing

Publication Analysis

Top Keywords

trapping acoustic
4
acoustic standing
4
standing waves
4
waves liquid
4
liquid drop
4
drop compressibility
4
compressibility reflections
4
reflections series
4
series takes
4
takes historical
4

Similar Publications

In this paper, we demonstrate that torsional surface elastic waves can propagate along the curved surface of a metamaterial elastic rod (cylinder) embedded in a conventional elastic medium. The crucial parameter of the metamaterial rod is its elastic compliance s44(1)ω, which varies as a function of frequency ω analogously to the dielectric function εω in Drude's model of metals. As a consequence, the elastic compliance s44(1)ω can take negative values s44(1)ω<0 as a function of frequency ω.

View Article and Find Full Text PDF

EchoTilt: An Acoustofluidic Method for the Capture and Enrichment of Nanoplastics Directed Toward Drinking Water Monitoring.

Micromachines (Basel)

December 2024

Science for Life Laboratory, Department of Protein Science, Division of Nanobiotechnology, KTH Royal Institute of Technology, 171 65 Solna, Sweden.

Micro- and nanoplastics have become increasingly relevant as contaminants to be monitored due to their potential health effects and environmental impact. Nanoplastics, in particular, have been shown to be difficult to detect in drinking water, requiring new capture technologies. In this work, we applied the acoustofluidic seed particle method to capture nanoplastics in an optimized, tilted grid of silica clusters even at the high flow rate of 5 mL/min.

View Article and Find Full Text PDF

Engineering the acoustic field with a Mie scatterer for microparticle patterning.

Lab Chip

January 2025

Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.

The utilization of acoustic fields offers a contactless approach for microparticle manipulation in a miniaturized system, and plays a significant role in medicine, biology, chemistry, and engineering. Due to the acoustic radiation force arising from the scattering of the acoustic waves, small particles in the Rayleigh scattering range can be trapped, whilst their impact on the acoustic field is negligible. Manipulating larger particles in the Mie scattering regime is challenging due to the diverse scattering modes, which impacts the local acoustic field.

View Article and Find Full Text PDF

Hyperspectral (HS) imaging bridges conventional imaging into spectroscopy and generates a spatial map of spectral variations. On the one hand, in HS imaging, the effect of the background on the final spectra has to be removed or managed. On the other hand, there are important classes of materials that need to be immobilized for investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!