Systematic Order-Made Synthesis of Sequence-Defined Polyurethanes with Length, Types, and Topologies.

ACS Macro Lett

School of Engineering Science, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi 782-8502, Japan.

Published: September 2023

AI Article Synopsis

  • - Polyurethanes are vital soft materials, but traditional synthesis methods limit control over their molecular weight and structure due to step-growth polymerization.
  • - The research introduces a new synthetic approach that allows the creation of polyurethanes with customizable lengths and end characteristics, enabling more precise control over the properties of the materials.
  • - The new methodology successfully produces high-molecular-weight oligomers and various complex structures like block co-oligomers and star oligomers, significantly advancing materials science and the understanding of structure-property relationships in polyurethanes.

Article Abstract

Polyurethanes are industrially and academically important as soft materials. They are conventionally synthesized by a process based on step-growth polymerization; thus, molecular weight and structural control are impossible. However, the development of a synthetic strategy for polyurethanes remains a big challenge in designing soft materials. Herein, we demonstrate a synthetic methodology for generating polyurethanes with selectable lengths and termini characteristics. The multistep synthetic process offered the systematic synthesis of high-molecular weight, regioregular, and α,ω-urethane telechelics. Various oligomers with order-made repeating units revealed the effective length of the polymer properties. To demonstrate the scope of our methodology, it was also applied to the synthesis of block co-oligomers, three-armed star oligomers, and miktoarm star co-oligomers. Thus, our method allows the synthesis of high-molecular-weight oligomers with complete structural and molecular weight control, which is of enormous value to materials science; particularly the study and application of structure-property relationships in polyurethanes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.3c00469DOI Listing

Publication Analysis

Top Keywords

soft materials
8
molecular weight
8
polyurethanes
5
systematic order-made
4
synthesis
4
order-made synthesis
4
synthesis sequence-defined
4
sequence-defined polyurethanes
4
polyurethanes length
4
length types
4

Similar Publications

The genus (Lamiaceae family) comprises approximately 300 species, which are widely used in traditional medicine for their diaphoretic, antiseptic, hemostatic, and anti-inflammatory properties, but scarcely in official ones. Therefore, the study of holds promise for developing new medicinal products. In aqueous and aqueous-alcoholic soft extracts of the herb, 16 amino acids, 20 phenolics, and 10 volatile substances were identified by HPLC and GC/MS.

View Article and Find Full Text PDF

Histology Assessment of Chitosan-Polyvinyl Alcohol Scaffolds Incorporated with CaO Nanoparticles.

Molecules

January 2025

Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 760001, Colombia.

Scaffolds for regenerative therapy can be made from natural or synthetic polymers, each offering distinct benefits. Natural biopolymers like chitosan (CS) are biocompatible and biodegradable, supporting cell interactions, but lack mechanical strength. Synthetic polymers like polyvinyl alcohol (PVA) provide superior mechanical strength and cost efficiency but are not biodegradable or supportive of cell adhesion.

View Article and Find Full Text PDF

To reveal the microstructural evolution and stress-strain distribution of 780 MPa-grade ferrite/martensite dual-phase steel during a uniaxial tensile deformation process, the plastic deformation behavior under uniaxial tension was studied using in situ EBSD and crystal plastic finite element method (CPFEM). The results showed that the geometrically necessary dislocations (GND) in ferrite accumulated continuously, which is conducive to the formation of grain boundaries, but the texture distribution did not change significantly. The average misorientation angle decreased and the proportion of low-angle grain boundaries increased with the increase of strain.

View Article and Find Full Text PDF

Topology Design of Soft Phononic Crystals for Tunable Band Gaps: A Deep Learning Approach.

Materials (Basel)

January 2025

School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China.

The phononic crystals composed of soft materials have received extensive attention owing to the extraordinary behavior when undergoing large deformations, making it possible to provide tunable band gaps actively. However, the inverse designs of them mainly rely on the gradient-driven or gradient-free optimization schemes, which require sensitivity analysis or cause time-consuming, lacking intelligence and flexibility. To this end, a deep learning-based framework composed of a conditional variational autoencoder and multilayer perceptron is proposed to discover the mapping relation from the band gaps to the topology layout applied with prestress.

View Article and Find Full Text PDF

Angle-Dependent Adhesive Mechanics in Hard-Soft Cylindrical Material Interfaces.

Materials (Basel)

January 2025

Department of System Dynamics and Friction Physics, Institute of Mechanics, Technische Universität Berlin, 10623 Berlin, Germany.

In this research, the adhesive contact between a hard steel and a soft elastomer cylinder was experimentally studied. In the experiment, the hard cylinder was indented into the soft one, after which the two cylinders were separated. The contact area between the cylinders was elliptical in shape, and the eccentricity of this increased as the angle between the axes of the contacting cylinders decreased.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!