Quantum Noise Spectroscopy of Dynamical Critical Phenomena.

Phys Rev Lett

Department of Physics, University of California, Berkeley, California 94720, USA.

Published: August 2023

The transition between distinct phases of matter is characterized by the nature of fluctuations near the critical point. We demonstrate that noise spectroscopy can not only diagnose the presence of a phase transition, but can also determine fundamental properties of its criticality. In particular, by analyzing a scaling collapse of the decoherence profile, one can directly extract the critical exponents of the transition and identify its universality class. Our approach naturally captures the presence of conservation laws and distinguishes between classical and quantum phase transitions. In the context of quantum magnetism, our proposal complements existing techniques and provides a novel toolset optimized for interrogating two-dimensional magnetic materials.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.131.070801DOI Listing

Publication Analysis

Top Keywords

noise spectroscopy
8
quantum noise
4
spectroscopy dynamical
4
dynamical critical
4
critical phenomena
4
phenomena transition
4
transition distinct
4
distinct phases
4
phases matter
4
matter characterized
4

Similar Publications

Spectral Content Effects Study in Non-Contact Resonance Ultrasound Spectroscopy.

Sensors (Basel)

January 2025

Department of Electronics Engineering, Kaunas University of Technology, 51368 Kaunas, Lithuania.

The application of spread-spectrum signals (arbitrary pulse width and position (APWP) sequences) in air-coupled resonant ultrasound spectroscopy is studied. It was hypothesized that spread-spectrum signal optimization should be based on te signal to noise ratio (SNR). Six APWP signal optimization criteria were proposed for this purpose.

View Article and Find Full Text PDF

Coherent Anti-Stokes Hyper-Raman Spectroscopy.

Nat Commun

January 2025

Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.

Coherent Raman scattering spectroscopies have been established as a powerful tool for investigating molecular systems with high chemical specificity. The existing coherent Raman scattering techniques detect only Raman active modes, which are a part of the whole molecular vibrations. Here, we report the first observation of coherent anti-Stokes hyper-Raman scattering (CAHRS) spectroscopy, which allows measuring hyper-Raman active vibrations at high speed.

View Article and Find Full Text PDF

A compact dual-gas sensor based on the two near-infrared distributed feedback diode lasers and a multipass cell has been established for the simultaneous measurement of methane (CH) and acetylene (CH). The time division multiplexing calibration-free direct absorption spectroscopy is used to eliminate the cross interference in the application of multicomponent gas sensors. A wavelength stabilization technique based on the proportion integration differentiation feedback control is developed to suppress laser wavelength drift and an H-infinity (H) filter algorithm to reduce the system noise.

View Article and Find Full Text PDF

Wireless power-up and readout from a label-free biosensor.

Biomed Microdevices

January 2025

Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA.

Wearable and implantable biosensors have rapidly entered the fields of health and biomedicine to diagnose diseases and physiological monitoring. The use of wired medical devices causes surgical complications, which can occur when wires break, become infected, generate electrical noise, and are incompatible with implantable applications. In contrast, wireless power transfer is ideal for biosensing applications since it does not necessitate direct connections between measurement tools and sensing systems, enabling remote use of the biosensors.

View Article and Find Full Text PDF

Optical density measurement has been used for decades to determine the microorganism concentration and more rarely for mammalian cells. Although this measurement can be carried out at any wavelength, studies report a limited number of measurement wavelengths, mainly around 600 nm, and no consensus seems to be emerging to propose an objective method for determining the optimum measurement wavelength for each microorganism. In this article, we propose a method for analyzing the absorbance spectra of ESKAPEE bacteria and determining the optimum measurement wavelength for each of them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!