Neuropeptides and peptide hormones are ancient, widespread signaling molecules that underpin almost all brain functions. They constitute a broad ligand-receptor network, mainly by binding to G protein-coupled receptors (GPCRs). However, the organization of the peptidergic network and roles of many peptides remain elusive, as our insight into peptide-receptor interactions is limited and many peptide GPCRs are still orphan receptors. Here we report a genome-wide peptide-GPCR interaction map in Caenorhabditis elegans. By reverse pharmacology screening of over 55,384 possible interactions, we identify 461 cognate peptide-GPCR couples that uncover a broad signaling network with specific and complex combinatorial interactions encoded across and within single peptidergic genes. These interactions provide insights into peptide functions and evolution. Combining our dataset with phylogenetic analysis supports peptide-receptor co-evolution and conservation of at least 14 bilaterian peptidergic systems in C. elegans. This resource lays a foundation for system-wide analysis of the peptidergic network.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615250PMC
http://dx.doi.org/10.1016/j.celrep.2023.113058DOI Listing

Publication Analysis

Top Keywords

peptidergic network
8
interactions
5
system-wide mapping
4
mapping peptide-gpcr
4
peptide-gpcr interactions
4
interactions c elegans
4
c elegans neuropeptides
4
neuropeptides peptide
4
peptide hormones
4
hormones ancient
4

Similar Publications

A brief history of insect neuropeptide and peptide hormone research.

Cell Tissue Res

December 2024

Department of Zoology, Stockholm University, S-10691, Stockholm, Sweden.

This review briefly summarizes 50 years of research on insect neuropeptide and peptide hormone (collectively abbreviated NPH) signaling, starting with the sequencing of proctolin in 1975. The first 25 years, before the sequencing of the Drosophila genome, were characterized by efforts to identify novel NPHs by biochemical means, mapping of their distribution in neurons, neurosecretory cells, and endocrine cells of the intestine. Functional studies of NPHs were predominantly dealing with hormonal aspects of peptides and many employed ex vivo assays.

View Article and Find Full Text PDF

Synaptic connectome of the Drosophila circadian clock.

Nat Commun

December 2024

Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany.

Article Synopsis
  • The study focuses on understanding the circadian clock's role in regulating daily biological processes by creating a detailed connectivity map of the Drosophila (fruit fly) brain.
  • Researchers found that the Drosophila circadian network has around 240 neurons, more than previously thought, and discovered new pathways for light input to these clock neurons.
  • They also investigated how the clock influences behaviors like feeding and reproduction through both direct and indirect connections, highlighting the importance of peptidergic signaling among clock neurons in enhancing network interconnectivity.
View Article and Find Full Text PDF

Temperature cues are integrated in a flexible circadian neuropeptidergic feedback circuit to remodel sleep-wake patterns in flies.

PLoS Biol

December 2024

Department of Neurology of Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China.

Organisms detect temperature signals through peripheral neurons, which relay them to central circadian networks to drive adaptive behaviors. Despite recent advances in Drosophila research, how circadian circuits integrate temperature cues with circadian signals to regulate sleep/wake patterns remains unclear. In this study, we used the FlyWire brain electron microscopy connectome to map neuronal connections, identifying lateral posterior neurons LPNs as key nodes for integrating temperature information into the circadian network.

View Article and Find Full Text PDF
Article Synopsis
  • * Recent studies have enhanced our comprehension of the neuropeptide signaling network in C. elegans by exploring its evolutionary conservation, molecular expressions, receptor-ligand interactions, and overall organization.
  • * This research provides insights into neuropeptidergic circuits and their transmission patterns, and C. elegans is proposed as a model to understand similar neuropeptide signaling networks in other organisms.
View Article and Find Full Text PDF

: Stimulated capsaicin-sensitive peptidergic sensory nerves release somatostatin (SST), which has systemic anti-inflammatory and analgesic effects, correlating with the severity of tissue injury. Previous studies suggest that SST release into the systemic circulation is likely to serve as a protective mechanism during thoracic and orthopedic surgeries, scoliosis operations, and septic conditions, all involving significant tissue damage, pain, and inflammation. In a severe systemic inflammation rat model, SST released from sensory nerves into the bloodstream enhanced innate defense, reducing mortality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!