Phase difference sensing technology (PDST) is employed for topography measurement, and two interference structures are proposed to achieve upper-limit adjustment and high resolution in the measurement range: a dual-wavelength system with a single Fabry-Perot (FP) cavity and a single-wavelength system with dual FP cavities. The phase difference between the two interference signals is determined by an elliptic fitting algorithm (EFA), and this change in phase difference is utilized to characterize the step height. Experimental results indicate that the measurement upper-limit can be adjusted to either 410 µm, 187 µm, or 108 µm by varying the wavelength difference in the dual-wavelength system, which gives a measurement error of 2.96%. In contrast, while offering a measurement resolution of 3.47 nm, the single-wavelength system exhibits a measurement error of 5.38%. The proposed method is capable of satisfying the measurement requirements during micro-electromechanical system (MEMS) processing with proficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.495680 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!