Hyperspectral spectroscopy requires light sources with wide spectral ranges from the visible to the mid-infrared. Here, we demonstrate the first fiber-based mid-infrared supercontinuum covering three octaves of frequency by leveraging 1-µm laser technology. The process consists in spectral broadening of a 1064-nm pump toward 0.48-2.5 µm in a graded-index multimode fiber, followed by a fluoro-indate fiber used to reach deeper into the near infrared (4.3 µm). Finally, an arsenic selenide chalcogenide fiber allows us to reach the 6-µm wavelength region, providing a 0.75-6-µm supercontinuum. We illustrate the potential of this light source by recording mid-infrared absorption spectra of organic compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.497678DOI Listing

Publication Analysis

Top Keywords

visible mid-infrared
8
mid-infrared supercontinuum
8
three octave
4
octave visible
4
mid-infrared
4
supercontinuum generation
4
generation seeded
4
seeded multimode
4
multimode silica
4
fiber
4

Similar Publications

Black aluminum is a material characterized by high surface porosity due to columnar growth and exhibits unique optical properties that make it attractive for applications such as light trapping, infrared detection, and passive thermal radiation cooling. In this study, we correlate the structural and optical properties of black aluminum by comparing it with conventional reflective aluminum layers. These layers of varying thicknesses were deposited on fused silica substrates, and their optical properties were analyzed.

View Article and Find Full Text PDF

Light-harvesting complex II (LHCII), the most abundant membrane protein in photosystem II, plays dual roles, i.e., efficient light harvesting and energy transfer to the reaction center under low light conditions and dissipating excess energy as heat to prevent photodamage under high irradiation conditions.

View Article and Find Full Text PDF

Ultra-Broadband Perfect Absorbers Based on Biomimetic Metamaterials with Dual Coupling Gradient Resonators.

Adv Mater

December 2024

Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, China.

Ultra-broadband metamaterial absorbers can achieve near-perfect absorption of omnidirectional electromagnetic waves, crucial for light utilization and manipulation. Traditional ultra-broadband metamaterials rely on the superposition of different resonator units either in the plane or in perpendicular directions to broaden absorption peaks. However, this approach is subject to quantity restrictions and complicates the fabrication process.

View Article and Find Full Text PDF

Infrared spectro-microscopy is a powerful technique for analysing chemical maps of cells and tissues for biomedical and clinical applications, yet the strong water absorption in the mid-infrared region is a challenge to overcome, as it overlaps with the spectral fingerprints of biological components. Microfluidic chips offer ultimate control over the water layer thickness and are increasingly used in infrared spectro-microscopy. However, the actual impact of the water layer thickness on the instrument's performance is often left to the experimentalist's intuition and the peculiarities of specific instruments.

View Article and Find Full Text PDF

The polymer dispersed liquid crystal (PDLC) holds potential application in smart windows, owing to its feasibility in regulating the transmittance of specific wavelength bands to improve energy utilization. Herein, a composite PDLC smart window is designed, which showcases high emissivity of 93.79% in the mid-infrared region and features the regulation of ultraviolet (UV), visible, and near-infrared (NIR) light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!