AI Article Synopsis

  • * The Shank proteins feature an N-terminal domain that interacts with Ras proteins and αCaMKII, regulating their activity and localization in dendrites, which is important for synaptic function.
  • * The study emphasizes how specific interactions within the Shank proteins influence their clustering at synapses, and explores how genetic variants linked to autism may disrupt these functions, impacting brain signaling.

Article Abstract

Members of the Shank family of postsynaptic scaffold proteins (Shank1-3) link neurotransmitter receptors to the actin cytoskeleton in dendritic spines through establishing numerous interactions within the postsynaptic density (PSD) of excitatory synapses. Large Shank isoforms carry at their N-termini a highly conserved domain termed the Shank/ProSAP N-terminal (SPN) domain, followed by a set of Ankyrin repeats. Both domains are involved in an intramolecular interaction which is believed to regulate accessibility for additional interaction partners, such as Ras family G-proteins, αCaMKII, and cytoskeletal proteins. Here, we analyze the functional relevance of the SPN-Ank module; we show that binding of active Ras or Rap1a to the SPN domain can differentially regulate the localization of Shank3 in dendrites. In Shank1 and Shank3, the linker between the SPN and Ank domains binds to inactive αCaMKII. Due to this interaction, both Shank1 and Shank3 exert a negative effect on αCaMKII activity at postsynaptic sites in mice in vivo. The relevance of the SPN-Ank intramolecular interaction was further analyzed in primary cultured neurons; here, we observed that in the context of full-length Shank3, a closed conformation of the SPN-Ank tandem is necessary for proper clustering of Shank3 on the head of dendritic spines. Shank3 variants carrying Ank repeats which are not associated with the SPN domain lead to the atypical formation of postsynaptic clusters on dendritic shafts, at the expense of clusters in spine-like protrusions. Our data show that the SPN-Ank tandem motif contributes to the regulation of postsynaptic signaling and is also necessary for proper targeting of Shank3 to postsynaptic sites. Our data also suggest how missense variants found in autistic patients which alter SPN and Ank domains affect the synaptic function of Shank3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861631PMC
http://dx.doi.org/10.1007/s12035-023-03611-5DOI Listing

Publication Analysis

Top Keywords

spn domain
16
postsynaptic sites
12
shank3
9
shank/prosap n-terminal
8
n-terminal spn
8
postsynaptic
8
postsynaptic signaling
8
dendritic spines
8
intramolecular interaction
8
relevance spn-ank
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!