ChecMatE: A workflow package to automatically generate machine learning potentials and phase diagrams for semiconductor alloys.

J Chem Phys

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Published: September 2023

Semiconductor alloy materials are highly versatile due to their adjustable properties; however, exploring their structural space is a challenging task that affects the control of their properties. Traditional methods rely on ad hoc design based on the understanding of known chemistry and crystallography, which have limitations in computational efficiency and search space. In this work, we present ChecMatE (Chemical Material Explorer), a software package that automatically generates machine learning potentials (MLPs) and uses global search algorithms to screen semiconductor alloy materials. Taking advantage of MLPs, ChecMatE enables a more efficient and cost-effective exploration of the structural space of materials and predicts their energy and relative stability with ab initio accuracy. We demonstrate the efficacy of ChecMatE through a case study of the InxGa1-xN system, where it accelerates structural exploration at reduced costs. Our automatic framework offers a promising solution to the challenging task of exploring the structural space of semiconductor alloy materials.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0166858DOI Listing

Publication Analysis

Top Keywords

semiconductor alloy
12
alloy materials
12
structural space
12
package automatically
8
machine learning
8
learning potentials
8
exploring structural
8
challenging task
8
checmate
4
checmate workflow
4

Similar Publications

Taxonomy of high pressure vibration spectra of zincblende semiconductor alloys based on the percolation model.

Sci Rep

January 2025

Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100, Toruń, Poland.

Due to their simple structure (two bond species randomly arranged on a cubic lattice), the zincblende ABC semiconductor alloys (zb-SCA) set a benchmark to explore how physical properties are impacted by disorder. A longstanding controversy was whether the lattice dynamics (phonons), governed by the bond force constant, i.e.

View Article and Find Full Text PDF

Effect of Alloying Metal Elements on the Valence Band of β-GaO: A First-Principles Study.

J Phys Chem Lett

January 2025

Group of the Fourth-generation Semiconductor Materials and Devices, Shenzhen Pinghu Laboratory, Shenzhen 518111, China.

β-GaO is a candidate semiconductor material for high-power electronics due to its ultrawide bandgap and high Baliga's figure of merit. However, its -type doping is extremely difficult because of its low and flat band dispersion at its valence band maximum (VBM). A few reports have predicted that the VBM of β-GaO can be enhanced via alloying a specific metal (M), which enables -type conduction.

View Article and Find Full Text PDF

Magnetic random-access memory that uses magnetic tunnel junction memory cells is a high-performance, non-volatile memory technology that goes beyond traditional charge-based memories. Today, its speed is limited by the high magnetization of the memory storage layer. Here we prepare magnetic tunnel junction memory devices with a low magnetization ferrimagnetic Heusler alloy MnGe as the memory storage layer on technologically relevant amorphous substrates using a combination of a nitride seed layer and a chemical templating layer.

View Article and Find Full Text PDF

The electrochemical biosensor has brought a paradigm shift in the field of sensing due to its fast response and easy operability. The performance of electrochemical sensors can be modified by coupling them with various metal oxides, nanomaterials, and nanocomposites. Hydrogen peroxide is a short-lived reactive oxygen species that plays a crucial role in various physiological and biological processes.

View Article and Find Full Text PDF

Two-dimensional (2D) hexagonal boron nitride (hBN) has garnered significant attention due to its exceptional thermal and chemical stability, excellent dielectric properties, and unique optical characteristics, making it widely used in deep ultraviolet (DUV) applications. However, the integration of hBN with plasmonic materials in the visible region (532 nm) has not been fully explored, particularly in terms of morphology regulation and size control of mono- and bimetallic nanoparticles (BMNPs) namely gold (Au), silver (Ag) and Au-Ag. A Schottky junction-based metal-semiconductor contact configuration is employed to achieve hot-carrier reflections on the metal side, enhancing the quantum efficiency of the photodetector.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!