Surface Ligand Modification on Ultrathin Ni(OH) Nanosheets Enabling Enhanced Alkaline Ethanol Oxidation Kinetics.

ACS Nano

Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.

Published: September 2023

The ethanol oxidation reaction (EOR) is an economical pathway in many electrochemical systems for clean energy, such as ethanol fuel cells and the anodic reaction in hydrogen generation. Noble metals, such as platinum, are benchmark catalysts for EOR owing to their superb electrochemical capability. To improve sustainability and product selectivity, nickel (Ni)-based electrocatalysts are considered promising alternatives to noble-metal EOR. Although Ni-based electrocatalysts are relieved from intermediate poisoning, their performances are largely limited by their relatively high onset potential. Therefore, the EOR usually competes with the oxygen evolution reaction (OER) at working potentials, resulting in a low EOR efficiency. Here, we demonstrate a strategy to modify the surface ligands on ultrathin Ni(OH) nanosheets, which substantially improved their catalytic properties for the alkaline EOR. Chemisorbed octadecylamine ligands could create an alcoholophilic layer at the nanosheet surface to promote alcohol diffusion and adsorption, resulting in outstanding EOR activity and selectivity over the OER at higher potential. These non-noble-metal-based 2D electrocatalysts and surface ligand engineering showcase a promising strategy for achieving high-efficiency electrocatalysis of EOR in many practical electrochemical processes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c05014DOI Listing

Publication Analysis

Top Keywords

surface ligand
8
ultrathin nioh
8
nioh nanosheets
8
ethanol oxidation
8
eor
8
ni-based electrocatalysts
8
surface
4
ligand modification
4
modification ultrathin
4
nanosheets enabling
4

Similar Publications

Ambient-pressure selective hydrogenation of unsaturated aldehydes and ketones into unsaturated alcohols in the water phase.

Dalton Trans

January 2025

Anhui Province Engineering Laboratory of Advanced Building Materials, College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China.

A universal and green catalytic system for the hydrogenation of unsaturated aldehydes and ketones into the corresponding alcohols with the CC bonds retained under atmospheric hydrogen pressure in the water phase was realized by -functionalized amino ligand-stabilized ruthenium complexes (-PPhCHNHMe)[(CHNHR)]RuCl (R = H, Me, Et) and (-PPhCHNMe)[(CHNHEt)]RuCl with wide substrate compatibility and excellent functionality tolerance. The structural synergism between -PPhCHNHMe and (CHNHEt) achieves the enhanced performance, with a positive correlation with the electron density of the amino ligand.

View Article and Find Full Text PDF

Cell type-specific upregulation of NKG2D ligand MICA in response to APTO253.

Ann Transl Med

December 2024

Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany.

One of the most important targets for natural killer (NK) cell-mediated therapy is the induction of natural killer group 2D ligand (NKG2D-L) expression. APTO253 is a small molecule that selectively kills acute myeloid leukemia (AML) cells, and it has been reported that APTO253 can induce Krüppel-like factor 4 (KLF4) expression and downregulate c-MYC expression. Recently, we discovered a novel role of APTO253 in modulating the NK cell response by inducing surface expression of NKG2D-Ls, especially MHC class I polypeptide-related sequence A (MICA), in AML cells.

View Article and Find Full Text PDF

Localized surface plasmon resonance (LSPR) metals exhibit remarkable light-absorbing property and unique catalytic activity, attracting significant attention in photocatalysts recently. However, the practical application of plasmonic nanometal is hindered by challenge of energetic electrons extraction and low selectivity. The energetic carriers generated in nanometal under illumination have extremely short lifetimes, leading to rapid energy loss.

View Article and Find Full Text PDF

The two-fold reduction of tetrabenzo[a,c,e,g]cyclooctatetraene (TBCOT, or tetraphenylene, 1) with K, Rb, and Cs metals reveals a distinctive core transformation pathway: a newly formed C-C bond converts the central eight-membered ring into a twisted core with two fused five-membered rings. This C-C bond of 1.589(3)-1.

View Article and Find Full Text PDF

Perovskite heterostructures have attracted wide interest for their photovoltaic and optoelectronic applications. The interdiffusion of halide anions leads to the poor stability and shorter lifetime of the halide perovskite heterostructures. Covering organic cations on the surface of perovskite heterostructures, the diffusion of ions can effectively be suppressed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!