Chemotherapy has occupied the critical position in cancer therapy, especially towards the post-operative, advanced, recurrent, and metastatic tumors. Paclitaxel (PTX)-based formulations have been widely used in clinical practice, while the therapeutic effect is far from satisfied due to off-target toxicity and drug resistance. The caseless multi-components make the preparation technology complicated and aggravate the concerns with the excipients-associated toxicity. The self-assembled PTX nanoparticles possess a high drug content and could incorporate various functional molecules for enhancing the therapeutic index. In this work, we summarize the self-assembly strategy for diverse nanodrugs of PTX. Then, the advancement of nanodrugs for tumor therapy, especially emphasis on mono-chemotherapy, combinational therapy, and theranostics, have been outlined. Finally, the challenges and potential improvements have been briefly spotlighted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465968 | PMC |
http://dx.doi.org/10.1016/j.apsb.2023.02.021 | DOI Listing |
Eur J Pharm Biopharm
January 2025
Department of Biophysics, Faculty of Science, P. J. Safarik University in Kosice, Jesenna 5 041 54 Kosice, Slovakia; SAFTRA Photonics sro., Moldavska cesta 51 04011 Kosice, Slovakia.
Due to the straightforward single-step synthesis, amphiphilic gradient copoly(2-oxazoline)s are becoming more popular alternative to their block analogue for the development of next-generation drug delivery systems. Here, we investigated the influence of polymer architecture on the physiochemical and biological assessment of nanoformulations formed by the self-assembly of gradient copoly(2-oxazoline)s. Two different architectures were synthesized: hydrophilic-grad-hydrophobic (mono-gradient) and hydrophobic-grad-hydrophilic-grad-hydrophobic (di-gradient) which contained a hydrophilic monomer, 2-ethyl-2-oxazoline (EtOx) and a hydrophobic monomer, 2-phenyl-2-oxazoline (PhOx).
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China. Electronic address:
Doxorubicin (DOX) is a vital anthracycline chemotherapeutic drug, yet presenting significant challenges due to its severe cardiotoxicity. While Doxil enhances the pharmacokinetics and reduces the cardiotoxicity of DOX solution (DOX sol), it shows limitations of low drug loading capacity and inadequate cellular uptake. To overcome these issues, this study developed a novel disulfide bond-linked DOX-maleimide prodrug (DSSM).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China. Electronic address:
Nanoformulation have been widely used in skin and transdermal drug delivery. However, the differences in integral nanoparticles absorption in healthy and diseased skin have not yet fully analyzed. The present study attempted to explore the percutaneous absorption of drugs via lesional skin by using atopic dermatitis (AD) as a model, dinitrochlorobenzene (DNCB) induced AD-like skin.
View Article and Find Full Text PDFMol Pharm
November 2024
Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS Pilani), Pilani Campus, Pilani, Rajasthan 333031, India.
BMC Complement Med Ther
September 2024
Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!