Unlabelled: Cell proliferation can be measured directly by counting cells or indirectly using assays that quantitate total protein or metabolic activity. However, for comparing cell proliferation under varying oxygen conditions it is not clear that these assays are appropriate surrogates for cell counting as cell metabolism and protein synthesis may vary under different oxygen environments. We used permeable bottom tissue culture ware to compare proliferation assays as a function of static oxygen concentrations under oxygen partial pressure (O) levels ranging from 2 to 139 mmHg. Cell proliferation was measured by cell counting and compared to surrogate methods measuring cell metabolism (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT) and total protein (sulforhodamine B) assays under these different environments in Caco-2, MCF-7, MCF-10A and PANC-1 human cell lines. We found that the MTT readings do not correlate with cell number for the Caco-2 and PANC-1 cell lines under different oxygen conditions, whereas the sulforhodamine B protein assays perform well under all conditions. However, within a given oxygen environment, both proliferation assays show a correlation with cell number. Therefore, the MTT assay must be used with caution when comparing cell growth or drug response for cells grown in different oxygen environments.
Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-023-00584-0.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465423 | PMC |
http://dx.doi.org/10.1007/s10616-023-00584-0 | DOI Listing |
BMC Pharmacol Toxicol
January 2025
Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.
View Article and Find Full Text PDFCancer Cell Int
January 2025
Department of Otolaryngology, Pudong Gongli Hospital, Shanghai, 200135, China.
Background: Specific molecular mechanisms by which AURKA promoted LSCC metastasis were still unknown.
Methods: Bioinformatic analysis was performed the relationship between TRIM28 and LSCC. Immunohistochemistry, Co-IP assay, Rt-PCR and Western Blot were used to examine the expression of related molecular.
Cell Commun Signal
January 2025
Centre of Postgraduate Medical Education, Centre of Translation Research, Department of Biochemistry and Molecular Biology, ul. Marymoncka 99/103, Warsaw, 01-813, Poland.
Background: Renal cell cancer (RCC) is the most common and highly malignant subtype of kidney cancer. Mesenchymal stromal cells (MSCs) are components of tumor microenvironment (TME) that influence RCC progression. The impact of RCC-secreted small non-coding RNAs (sncRNAs) on TME is largely underexplored.
View Article and Find Full Text PDFChin Med
January 2025
Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
Background: With extended gefitinib treatment, the therapeutic effect in some non-small cell lung cancer (NSCLC) patients declined with the development of drug resistance. Aidi injection (ADI) is utilized in various cancers as a traditional Chinese medicine prescription. This study explores the molecular mechanism by which ADI, when combined with gefitinib, attenuates gefitinib resistance in PC9GR NSCLC cells.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
Extracellular vesicles (EVs) are membrane-bound vesicles that are shed or secreted from the cell membrane and enveloped by a lipid bilayer. They possess stability, low immunogenicity, and non-cytotoxicity, exhibiting extensive prospects in regenerative medicine (RM). However, natural EVs pose challenges, such as insufficient targeting capabilities, potential biosafety concerns, and limited acquisition pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!