Various phosphorus (P)-inactivating materials with a strong capability of immobilizing P in sediment have been developed for lake geoengineering purposes to control internal P pollution. However, unsatisfactory applications have raised concerns about the reliability of the method. This study hypothesized that P migration from sediment to material is a key process regulating the immobilization, which is often neglected by common assessment procedures that assume that the material is closely in contact with sediment (e.g., as mixtures). To verify this hypothesis, 90-day incubation tests were conducted using drinking water treatment residue (DWTR). The results showed that the soluble P in the overlying water of sediment-DWTR mixtures and the mobile P in the mixtures were substantially reduced from the initial period and remained low during the whole incubation tests. However, assessment based on separated samples indicated a gradual P migration from sediment to DWTR for immobilization. Even after 90 days of incubation, mobile P still accounted for ∼5.33% of total P in the separated sediment. Further analysis suggested that using mixtures of sediment with DWTR accelerated P migration during the assessment, leading to a faster P immobilization assessment. Considering the relatively low levels of mobile P in the separated DWTR during incubation, the gradual decrease in mobile P in the separated sediment indicates that sediment P release regulates P immobilization efficiency. Therefore, designing a proper strategy to ensure sufficient time for the material to remain in close contact with the target sediment is critical to reducing uncertainties in lake geoengineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10466892PMC
http://dx.doi.org/10.1016/j.wroa.2023.100197DOI Listing

Publication Analysis

Top Keywords

migration sediment
12
lake geoengineering
12
sediment
10
material key
8
key process
8
neglected common
8
incubation tests
8
sediment dwtr
8
separated sediment
8
mobile separated
8

Similar Publications

Ocean alkalinity enhancement (OAE) based on enhanced weathering of olivine (EWO) is a promising marine carbon dioxide removal (mCDR) technique. Previous research primarily focuses on the toxicological effects of potentially toxic metals (PTMs) released from olivine. In this Perspective, we explore the overlooked impacts of EWO on environmental media in two scenarios: olivine applied to beaches/shallow continental shelves and offshore dispersion by vessels.

View Article and Find Full Text PDF

As a transitional zone where rivers meet the sea, estuaries are influenced by river transport and ocean tides, resulting in complex variations in parameters such as organic matter content, pH, and sediment salinity. This paper primarily explores the vertical migration patterns of polychlorinated biphenyls (PCBs) under complex conditions, focusing on the soil sediments in the Dagu River estuary area. We designed an indoor soil column leaching experiment to investigate how soil organic matter content, pH, and salinity affect the vertical migration of PCBs in soil.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates uranium (U/U) ratios in environmental samples from the Pamir region to evaluate the influence of human nuclear activity on this remote area.
  • The U/U ratios found (ranging from 0.007256 to 0.007263) suggest a slight enrichment of uranium, indicating the presence of anthropogenic materials, particularly in cryoconite compared to soil and water.
  • The findings also suggest that while the area shows subtle enrichment of uranium, it remains relatively clean from local contamination, with environmental uranium largely resulting from historical global nuclear fallout rather than local sources.
View Article and Find Full Text PDF

Gas-water distribution is significant in the determination of hydrocarbon accumulation mechanisms in gas reservoirs, especially for the exploitation of tight sandstone reservoirs. One of such examples are the gas reservoirs in the Yishan Slope in China, where the internal relationship between gas-water distribution is poorly understood. The pattern and controlling factors for gas-water distribution in tight sandstones gas reservoirs in the Yishan Slope have been examined from macro (such as sedimentary and anticlinal structures) and micro (such as pore throat size, heterogeneity) perspectives, using data from rock eval pyrolysis, sedimentary structure, sediment diagenesis, gas migration, mercury injection experiments, and well logs.

View Article and Find Full Text PDF

Hydrate formation in porous media with upward-migrating methane and its implications for the evolution of deep-sea cold seep ecosystems.

Sci Total Environ

January 2025

Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:

Methane leaking from the deep seabed is a primary source of carbon and energy for various microorganisms, sustaining the evolution and productivity of cold seep ecosystems. However, the dynamics of methane hydrate formation under methane seepage conditions and potential impacts on the evolution of cold seep ecosystems remain unclear. This study investigated the dynamic formation characteristics of gas hydrates within cold seep sediments by simulating the methane leakage process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!